[1] Lawrence, C.A. (2003) Fundamentals of Spun Yarn Technology. CRC Press, Boca Raton.
https://doi.org/10.1201/9780203009581
[2] Dan Hasanuzzaman, P.K. and Basu, S. (2015) Optimization of Ring-Spinning Process Parameters Using Response Surface Methodology. The Journal of The Textile Institute, 106, 510-522.
https://doi.org/10.1080/00405000.2014.929250
[3] Cheng, K.P.S. and Yu, C. (2003) A Study of Compact Spun Yarns. Textile Research Journal, 73, 345-349.
https://doi.org/10.1177/004051750307300412
[4] Soe, A.K., Takahashi, M., Nakajima, M., Matsuo, T. and Matsumoto, T. (2004) Structure and Properties of MVS Yarns in Comparison with Ring Yarns and Open-End Rotor Spun Yarns. Textile Research Journal, 74, 819-826.
https://doi.org/10.1177/004051750407400911
[5] Basal, G. and Oxenham, W. (2006) Comparison of Properties and Structures of Compact and Conventional Spun Yarns. Textile Research Journal, 76, 567-575.
https://doi.org/10.1177/0040517506065591
[6] Rameshkumar, C., Anandkumar, P., Senthilnathan, P., Jeevitha, R. and Anbumani, N. (2008) Comparative Studies on Ring Rotor and Vortex Yarn Knitted Fabrics. Autex Research Journal, 8, 100-105.
[7] Khurshid, M.F., Nadeem, K., Asad, M., Chaudhry, M.A. and Amanullah, M. (2013) Comparative Analysis of Cotton Yarn Properties Spun on Pneumatic Compact Spinning Systems. Fibres & Textiles in Eastern Europe, 21, 30-34.
[8] Göktepe, F., Yilmaz, D. and Göktepe, Ö. (2006) A Comparison of Compact Yarn Properties Produced on Different Systems. Textile Research Journal, 76, 226-234.
https://doi.org/10.1177/0040517506061241
[9] Nikolić, M., Stjepanovič, Z., Lesjak, F. and Štritof, A. (2003) Compact Spinning for Improved Quality of Ring-Spun Yarns. Fibres & Textiles in Eastern Europe, 11, 30-35.
[10] Kumar, A., Ishtiaque, S. and Salhotra, K. (2003) Compact Spinning: A Critical Review. Paper No: IMECE2003-55321, American Society of Mechanical Engineers, Washington DC.
https://doi.org/10.1115/IMECE2003-55321
[11] Altas, S. and Kadoğlu, H. (2012) Comparison of Conventional Ring, Mechanical Compact and Pneumatic Compact Yarn Spinning Systems. Journal of Engineered Fibers and Fabrics, 7, 87-100.
https://doi.org/10.1177/155892501200700201
[12] Chellamani, K. (2000) Compact Spinning: Spinning of the Future. Asian Textile Journal, 9, 30-33.
[13] Spinnovation (1999) Sussen Elite Spinning System. Magazine for Spinning Mills, 5, 3-7.
[14] Brunk, N. (2002) Three Years of Practical Experience with the Elite CompactSet in Short-Staple Spinning. Spinnovation, 3, 11.
[15] Zhibin, L.C.Z. (2009) Application of Suessen Compact Spinning Special Parts. Cotton Textile Technology, 9.
[16] Basal, G. (2003) The Structure and Properties of Vortex and Compact Spun Yarns, in Fiber and Polymer Science. North Carolina State University, Raleigh.
[17] Stahlecker, P. (2003) EliTe CompactSet. Recent Developments and Applications. 62nd Plenary Meeting of the International Cotton Advisory Committee, Gdańsk, 07-12 September 2003.
[18] Jackowski, T., Cyniak, D. and Czekalski, J. (2004) Compact Cotton Yarn. Fibers &. Text in Eastern Europe, 12, 22-26.
[19] Lehmann, B. and Herzberg, C. (2016) Yarn Constructions and Yarn Formation Techniques. In: Cherif, C., Ed., Textile Materials for Lightweight Constructions, Springer, Berlin, Heidelberg, 103-157.
https://doi.org/10.1007/978-3-662-46341-3_4
[20] Grosberg, P. and Mansour, S. (1975) High-Speed Open-End Rotor-Spinning. The Journal of the Textile Institute, 66, 89-396.
https://doi.org/10.1080/00405007508630531
[21] Yilmaz, D., Göktepe, F., Göktepe, Ö. and Kremenakova, D. (2007) Packing Density of Compact Yarns. Textile Research Journal, 77, 661-667.
https://doi.org/10.1177/0040517507078796
[22] Ahmad, M.M. (2009) Future Spinning Technology: Compact Spinning. Pakistan Textile Journal, 58, 52-54.
[23] Çelik, P. and Kadoglu, H. (2004) A Research on the Compact Spinning for Long Staple Yarns. Fibres & Textiles in Eastern Europe, 12, 27-31.
[24] Czekalski, J., Cyniak, D., Jackowski, T. and Sieradzki, K. (2007) Quality of Wool-Type Compact Yarns from Twisted and Rubbed Roving. Fibres & Textiles in Eastern Europe, 15, 38-44.
[25] Dash, J.R., Ishtiaque, S. and Alagirusamy, R. (2002) Properties and Processibility of Compact Yarns. Indian Journal of Fibre & Textile Research, 27, 362-368.
[26] Krifa, M. and Ethridge, M.D. (2006) Compact Spinning Effect on Cotton Yarn Quality: Interactions with Fiber Characteristics. Textile Research Journal, 76, 388-399.
https://doi.org/10.1177/0040517506062648
[27] Jiang, X., Hu, J.L., Cheng, K.P.S. and Postle, R. (2005) Determining the Cross-Sectional Packing Density of Rotor Spun Yarns. Textile Research Journal, 75, 233-239.
https://doi.org/10.1177/004051750507500308
[28] Guo, Y., et al. (2018) Influence of Rotor Speed on Yarn Property and Structure. Cotton Textile Technology, 3, 10.
[29] Ghosh, A. (2006) Studies on Structural Aspects of Ring, Rotor Air Jet and Open-End Friction Spun Yarns. 2006 National Conference on Emerging Trends in Textile, Fibre & Apparel Engineering, Government College of Engineering & Textile Technology, Berhampore.
[30] Artzt, P. (1997) The Special Structure of Compact Yarns-Advantages in Downstream Processing, ITB Yarn Fab. Form, 2, 41-48.
[31] Stalder, H. (2000) Ring-Spinning Advance. Textile Asia, 3, 43-46.
[32] Omeroglu, S. and Ulku, S. (2007) An Investigation about Tensile Strength, Pilling and Abrasion Properties of Woven Fabrics Made from Conventional and Compact Ring-Spun Yarns. Fibres & Textiles in Eastern Europe, 15, 39-42.
[33] Skenderi, Z., Kopitar, D., Ražić, S.E. and Iveković, G. (2019) Study on Physical-Mechanical Parameters of Ring, Rotor and Air-Jet-Spun Modal and Micro Modal Yarns. Tekstilec, 62, 42-53.
https://doi.org/10.14502/Tekstilec2019.62.42-53
[34] Kumar, A., Salhotra, K. and Ishtiaque, S. (2006) Analysis of Spinning Process Using the Taguchi Method. Part V: Effect of Spinning Processvariables on Physical Properties of Ring, Rotor and Air-Jet Yarns. The Journal of The Textile Institute, 97, 463-473.
https://doi.org/10.1533/joti.2005.0111
[35] Arain, F.A., Tanwari, A., Hussain, T. and Malik, Z.A. (2012) Multiple Response Optimization of Rotor Yarn for Strength, Unevenness, Hairiness and Imperfections. Fibers and Polymers, 13, 118-122.
https://doi.org/10.1007/s12221-012-0118-8
[36] Ahmed, S., Alimuzzaman, S. and Monjurul Haque, A.K.M. (2020) Effect of Shed Geometry on Starting Mark of Woven Fabric. SN Applied Sciences, 2, Article No. 602.
https://doi.org/10.1007/s42452-020-2384-1
[37] Skenderi, Z., Kopitar, D., Vrljičak, Z. and Iveković, G. (2018) Unevenness of Air-Jet Spun Yarn Comparison with Ring and Rotor Spun Yarn Made from Micro Modal Fibers. Tekstilec, 67, 14-26.
[38] USTER® (2009) The Uster® Tester 5.
https://www.uster.com/fileadmin/user_upload/customer/customer/Knowledge/Textile_Know_
How/Yarn_testing/U_T5_How_to_avoid_hairiness.pdf
[39] Nurwaha, D. and Wang, X.H. (2008) Comparison of the New Methodologies for Predicting the CSP Strength of Rotor Yarn. Fibers and Polymers, 9, 782-784.
https://doi.org/10.1007/s12221-008-0122-1
[40] Hearle, J.W. and Morton, W.E. (2008) Physical Properties of Textile Fibres. 4th Edition, Elsevier, Amsterdam, 796.
[41] Su, X.Z., Gao, W.D., Liu, X.J., Xie, C.P. and Xu, B.J. (2015) Research on the Compact-Siro Spun Yarn Structure. Fibres and Textiles in Eastern Europe, 23, 54-57.
[42] Moučková, E., Mertová, I., Jirásková, P., Krupincová, G. and Křemenáková, D. (2015) Properties of Viscose Vortex Yarns Depending on Technological Parameters of Spinning. Autex Research Journal, 15, 138-147.
https://doi.org/10.2478/aut-2014-0046
[43] Schwarz, E.R. (1951) Certain Aspects of Yarn Structure. Textile Research Journal, 21, 125-136.
https://doi.org/10.1177/004051755102100301
[44] Petrulis, D. and Petrulyte, S. (2017) Packing Properties of Fibres in the Open- Packed Yarn Mode. Fibres & Textiles in Eastern Europe, 25, 57-61.
https://doi.org/10.5604/12303666.1228171