Back
 MSA  Vol.12 No.2 , February 2021
Preparation of Anatase Titanium Dioxide Nanoparticle Powders Submitting Reactive Oxygen Species (ROS) under Dark Conditions
Abstract: Recently, under the circumstances of pandemic of COVID-19 much attention has been paid to titanium dioxide TiO2 as bactericidal agent; however, conventional TiO2 requires ultraviolet radiation or visible light to exercise its photocatalytic properties and its induced antimicrobial activity. In order to expand its applications directed at wide civil life, antibacterial TiO2 being usable under dark conditions has been demanded. The present paper describes the powder characterization of newly developed potassium K and phosphorous P co-doped nanometer-size anatase TiO2 powders using X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM & TEM), Brunauer-Emmett-Teller method (BET), fourier-transform infrared spectroscopy (FT-IR), X-ray absorption fine structure (XAFS), electron spin resonance (ESR) and chemiluminescence (CL). It was found for the first time that thus prepared anatase TiO2 could submit much reactive oxygen species (ROS) even in the dark, which has close relation with bactericidal activity in light interception.
Cite this paper: Nguyen, T. , Lemaitre, P. , Kato, M. , Hirota, K. , Tsukagoshi, K. , Yamada, H. , Terabe, A. , Mizutani, H. and Kanehira, S. (2021) Preparation of Anatase Titanium Dioxide Nanoparticle Powders Submitting Reactive Oxygen Species (ROS) under Dark Conditions. Materials Sciences and Applications, 12, 89-110. doi: 10.4236/msa.2021.122006.
References

[1]   Fischer, K., Gawel, A., Rosen, D., Krause, M., Latif, A.A., Griebe, J., et al. (2017) Low-Temperature Synthesis of Anatase/Rutile/Brookite TiO2 Nanoparticles on a Polymer Membrane for Photocatalysis. Catalyst, 7, 209-222.
https://doi.org/10.3390/catal7070209

[2]   Catauro, M., Tranquillo, E., Poggetto, G.D., Pasquali, M., Dell’Era, A. and Ciprioti, S.V. (2018) Influence of the Heat Treatment on the Particles Size and on the Crystalline Phase of TiO2 Synthesized by the Sol-Gel Method. Materials, 11, 2364-2374.
https://doi.org/10.3390/ma11122364

[3]   Pena, M., Meng, X., Korfiatis, G.P. and Jing, C. (2006) Adsorption Mechanism of Arsenic on Nanocrystalline Titanium Dioxide. Environmental Science & Technology, 40, 1257-1262.
https://doi.org/10.1021/es052040e

[4]   Kuo, C.Y., Wu, C.H., Wu, J.T. and Chen, Y.R. (2015) Synthesis and Characterization of a Phosphorus-Doped TiO2 Immobilized Bed for the Photodegradation of Bisphenol A under UV and Sunlight Irradiation. Reaction Kinetics, Mechanisms and Catalysis, 114, 753-766.
https://doi.org/10.1007/s11144-014-0783-2

[5]   Liou, J.W. and Chang, H.H. (2012) Bactericidal Effects and Mechanisms of Visible Light-Responsive Titanium Dioxide Photocatalysts on Pathogenic Bacteria. Archivum Immunologiae et Therapiae Experimentalis, 60, 267-275.
https://doi.org/10.1007/s00005-012-0178-x

[6]   Akpan, U.G. and Hameed, B.H. (2009) Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2-Based Photocatalysts: A Review. Journal of Hazardous Materials, 17, 520-529.
https://doi.org/10.1016/j.jhazmat.2009.05.039

[7]   Tachikawa, T., Tojo, S., Fujitsuka, M. and Majima, T. (2004) Influences of Adsorption on TiO2 Photocatalytic One-Electron Oxidation of Aromatic Sulfides Studied by Time-Resolved Diffuse Reflectance Spectroscopy. The Journal of Physical Chemistry B, 108, 5859-5866.
https://doi.org/10.1021/jp037003t

[8]   Carp, O., Huisma, C.L. and Reller, A. (2004) Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry, 32, 133-177.
https://doi.org/10.1016/j.progsolidstchem.2004.08.001

[9]   Sunada, K., Watanabe, T. and Hashimoto, K. (2003) Studies on Photokilling of Bacteria on TiO2 Thin Film. Journal of Photochemistry and Photobiology A: Chemistry, 156, 227-233.
https://doi.org/10.1016/S1010-6030(02)00434-3

[10]   Akhavan, O. (2009) Lasting Antibacterial Activities of Ag-TiO2/Ag/a-TiO2 Nanocomposite Thin Film Photocatalysts under Solar Light Irradiation. Journal of Colloid and Interface Science, 336, 117-124.
https://doi.org/10.1016/j.jcis.2009.03.018

[11]   Ashkarran, A.A., Aghigh, S.M., Kavianipour, M. and Farahani, N.J. (2011) Visible Light Photo- and Bioactivity of Ag/TiO2 Nanocomposite with Various Silver Contents. Current Applied Physics, 11, 1048-1055.
https://doi.org/10.1016/j.cap.2011.01.042

[12]   Sun, C., Li, Q., Gao, S., Cao, L. and Shang, J.K. (2010) Enhanced Photocatalytic Disinfection of Escherichia coli Bacteria by Silver and Nickel Comodification of a Nitrogen-Doped Titanium Oxide Nanoparticle Photocatalyst under Visible-Light Illumination. Journal of the American Ceramic Society, 93, 531-535.
https://doi.org/10.1111/j.1551-2916.2009.03388.x

[13]   Yu, J.C., Ho, W.K., Lin, J., Yip, H. and Wong, P.K. (2003) Photocatalytic Activity, Antibacterial Effect, and Photoinduced Hydrophilicity of TiO2 Films Coated on a Stainless Steel Substrate. Environmental Science & Technology, 37, 2296-2301.
https://doi.org/10.1021/es0259483

[14]   Sunada, K., Kikuchi, Y., Hashimoto, K. and Fujishima, A. (1998) Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts. Environmental Science & Technology, 32, 726-728.
https://doi.org/10.1021/es970860o

[15]   Salih, F.M. (2002) Enhancement of Solar Inactivation of Escherichia coli by Titanium Dioxide Photocatalytic Oxidation. Journal of Applied Microbiology, 92, 920- 926.
https://doi.org/10.1046/j.1365-2672.2002.01601.x

[16]   Zaleska, A. (2008) Doped-TiO2: A Review. Recent Patents on Engineering, 2, 157- 164. https://doi.org/10.2174/187221208786306289

[17]   Le, P.H., Le, T.H., Lam, T.N., Nguyen, T.N.H., Nguyen, V.T., Le, T.C.T., et al. (2018) Enhanced Photocatalytic Performance of Nitrogen-Doped TiO2 Nanotube Arrays Using a Simple Annealing Process. Micromachines, 9, 618-630.
https://doi.org/10.3390/mi9120618

[18]   Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., et al. (2019) Toxicity and Mechanisms of Action of Titanium Dioxide Nanoparticles in Living Organisms. Jour- nal of Environmental Science, 75, 40-53.
https://doi.org/10.1016/j.jes.2018.06.010

[19]   Venkatasubbu, D., Baskarb, R., Anusuya, T., Seshan, C.A. and Chelliah, R. (2016) Toxicity Mechanism of Titanium Dioxide and Zinc Oxide Nanoparticles against Food Pathogens. Colloids and Surfaces B: Biointerfaces, 148, 600-606.
https://doi.org/10.1016/j.colsurfb.2016.09.042

[20]   Iavicoli, I., Leso, V., Fontana, L. and Berganaschi, A. (2011) Toxicological Effects of Titanium Dioxide Nanoparticles: A Review of in Vitro Mammalian Studies. European Review for Medical and Pharmacological Sciences, 15, 481-508.

[21]   Santhoshkumar, T., Rahuman, A.A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A.V., et al. (2014) Green Synthesis of Titanium Dioxide Nanoparticles Using Psidium guajava Extract and Its Antibacterial and Antioxidant Properties. Asian Pacific Journal of Tropical Medicine, 7, 968-976.
https://doi.org/10.1016/S1995-7645(14)60171-1

[22]   Hirota, K., Sugimoto, M., Kato, M., Tsukagoshi, K., Tanigawa, T. and Sugimoto, H. (2010) Preparation of Zinc Oxide Ceramics with a Sustainable Antibacterial Activity under Dark Conditions. Ceramics International, 36, 497-506.
https://doi.org/10.1016/j.ceramint.2009.09.026

[23]   Nguyen, T.M.P., Hirota, S., Suzuki, Y., Kato, M., Hirota, K., Taniguchi, H., et al. (2018) Preparation of ZnO Powders with Strong Antibacterial Activity under Dark Conditions. Journal of the Japan Society of Powder and Powder Metallurgy, 65, 316-324.
https://doi.org/10.2497/jjspm.65.316

[24]   Nguyen, T.M.P., Hirota, K., Kato, M., Tsukagoshi, K., Yamada, H., Terabe, A., et al. (2019) Dependence of Antibacterial Activity of ZnO Powders on Their Physicochemical Properties. Journal of the Japan Society of Powder and Powder Metallurgy, 66, 435-441.
https://doi.org/10.2497/jjspm.66.434

[25]   Chen, L.C., Huang, C.M. and Tsai, F.R. (2007) Characterization and Photocatalytic Activity of K+-Doped TiO2 Photocatalysts. Journal of Molecular Catalysis A: Chemical, 265, 133-140.
https://doi.org/10.1016/j.molcata.2006.10.011

[26]   Bessekhouad, Y., Robert, D., Weber, J.V. and Chaoui, N. (2004) Effect of Alkaline-Doped TiO2 on Photocatalytic Efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 167, 49-57.
https://doi.org/10.1016/j.jphotochem.2003.12.001

[27]   Yang, G., Yan, Z., Xiao, T. and Yang, B. (2013) Low-Temperature Synthesis of Alkalis Doped TiO2 Photocatalysts and Their Photocatalytic Performance for Degradation of Methyl Orange. Journal of Alloys and Compounds, 580, 15-22.
https://doi.org/10.1016/j.jallcom.2013.05.074

[28]   Yildizhan, M.M., Sturm, S. and Gulgun, M.A. (2016) Structural and Electronic Modifications on TiO2 Anatase by Li, K or Nb Doping below and above the Solubility Limit. Journal of Materials Science, 51, 5912-5923.
https://doi.org/10.1007/s10853-016-9893-8

[29]   Hao, L., Guan, S., Takaya, S., Yoshida, H., Tochihara, M. and Lu, Y. (2017) Preparation of Visible-Light-Responsive TiO2 Coatings Using Molten KNO3 Treatment and Their Photocatalytic Activity. Applied Surface Science, 407, 276-281.
https://doi.org/10.1016/j.apsusc.2017.02.097

[30]   Yu, J.C., Zhang, L., Zheng, Z. and Zhao, J. (2003) Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity. Chemistry of Materials, 15, 2280-2286.
https://doi.org/10.1021/cm0340781

[31]   Lin, L., Lin, W., Zhu, Y., Zhao, B. and Xie, Y. (2005) Phosphor-Doped Titania—A Novel Photocatalyst Active in Visible Light. Chemistry Letters, 34, 284-285.
https://doi.org/10.1246/cl.2005.284

[32]   Shi, Q., Yang, D., Jiang, Z. and Li, J. (2006) Visible-Light Photocatalytic Regeneration of NADH Using P-Doped TiO2 Nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 43, 44-48.
https://doi.org/10.1016/j.molcatb.2006.06.005

[33]   Pan, X., Yang, M.Q., Fu, X., Zhang, N. and Xu, Y.J. (2013) Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale, 5, 3601.
https://doi.org/10.1039/c3nr00476g

[34]   Lin, L., Lin, W., Xie, J., Zhu, Y., Zhao, B. and Xie, Y. (2007) Photocatalytic Properties of Phosphor-Doped Titania Nanoparticles. Applied Catalysis B: Environmental, 75, 52-58.
https://doi.org/10.1016/j.apcatb.2007.03.016

[35]   Jin, C., Zheng, R.Y., Guo, Y., Xie, J.L., Zhu, Y.X. and Xie, Y.C. (2009) Hydrothermal Synthesis and Characterization of Phosphorous-Doped TiO2 with High Photocatalytic Activity for Methylene Blue Degradation. Journal of Molecular Catalysis A: Chemical, 313, 44-48.
https://doi.org/10.1016/j.molcata.2009.07.021

[36]   Alfred, A.C., Olav, M.K. and Rance, A.V. (1995) Quantitative Analysis in Diffuse Reflectance Spectrometry: A Modified Kubelka-Munk Equation. Vibrational Spectroscopy, 9, 19-27.
https://doi.org/10.1016/0924-2031(94)00065-O

[37]   Mousset, E., Oturan, N. and Oturan, M.A. (2018) An Unprecedented Route of OH Radical Reactivity Evidenced by an Electrocatalytical Process: Ipso-Substitution with Perhalogenocarbon Compounds. Applied Catalysis B: Environmental, 226, 135-146.
https://doi.org/10.1016/j.apcatb.2017.12.028

[38]   Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32, 751-767.
https://doi.org/10.1107/S0567739476001551

[39]   Lin, X.C., Tijana, R., Zhiyu, W. and Marion, C.T. (1997) XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions. The Journal of Physical Chemistry B, 101, 10688-10697.
https://doi.org/10.1021/jp971930g

[40]   Bandna, B., Santosh, K., Heung, N.L. and Rajesh, K. (2016) Formation of Oxygen Vacancies and Ti3+ State in TiO2 Thin Film and Enhanced Optical Properties by Air Plasma Treatment. Scientific Reports, 6, Article No. 32355.
https://doi.org/10.1038/srep32355

[41]   Ma, J., Li, W., Le, N.T., Díaz-Real, J.A., Body, M., Legein, C., et al. (2019) Red-Shifted Absorptions of Cation-Defective and Surface Functionalized Anatase with Enhanced Photoelectrochemical Properties. ACS Omega, 4, 10929-10938.
https://doi.org/10.1021/acsomega.9b01219

[42]   Fujishima, A. and Zhang, C.R. (2006) Titanium Dioxide Photocatalysis: Present Situation and Future Approaches. Chimie, 9, 750-760.
https://doi.org/10.1016/j.crci.2005.02.055

[43]   Smith, B.A., Teel, A.L. and Watts, R.J. (2004) Identification of the Reactive Oxygen Species Responsible for Carbon Tetrachloride Degradation in Modified Fenton’s Systems. Environmental Science & Technology, 38, 5465-5469.
https://doi.org/10.1021/es0352754

[44]   Kozmér, Z., Takács, E., Wojnárovits, L., Alapi, T., Hernádi, K. and Dombi, A. (2016) The Influence of Radical Transfer and Scavenger Materials in Various Concentrations on the Gamma Radiolysis of Phenol. Radiation Physics and Chemistry, 124, 52-57.
https://doi.org/10.1016/j.radphyschem.2015.12.011

[45]   Kormali, P., Triantis, T., Dimotikali, D., Hiskia, A. and Papaconstantinou, E. (2006) On the Photooxidative Behavior of TiO2 and PW12O403-: OH Radicals versus Holes. Applied Catalysis B: Environmental, 68, 139-146.
https://doi.org/10.1016/j.apcatb.2006.07.024

[46]   Nishibori, S. and Namiki, K. (1998) Superoxide Anion Radical-Scavenging Ability of Fresh and Heated Vegetable Juices. Nippon Shokuhin Kagaku Kogaku Kaishi, 45, 144-148.
https://doi.org/10.3136/nskkk.45.144

[47]   Wang, L., Liu, S., Zheng, Z., Pi, Z., Song, F. and Liu, Z. (2015) Rapid Assay for Testing Superoxide Anion Radical Scavenging Activities to Natural Pigments by Ultra-High Performance Liquid Chromatography-Diode-Array Detection Method. Analytical Methods, 7, 1535-1542.
https://doi.org/10.1039/C4AY02690J

[48]   Ao, Y., Satoh, K., Shibano, K., Kawahito, Y. and Shioda, S. (2008) Singlet Oxygen Scavenging Activity and Cytotoxicity of Essential Oils from Rutaceae. Journal of Clinical Biochemistry and Nutrition, 43, 6-12.
https://doi.org/10.3164/jcbn.2008037

[49]   Noda, H., Oikawa, K., Ogata, T., Matsuki, K. and Kamada, H. (1986) Preparation Method and Characterization of Titanium Oxide (IV). Journal of the Chemical Society of Japan, 8, 1084-1090. (In Japanese)

 
 
Top