Back
 JAMP  Vol.9 No.1 , January 2021
The Strain/Stress Fields of a Subsurface Rectangular Dislocation Loop Parallel to the Surface of a Half Medium: Analytical Solution with Verification
Abstract: The strain and stress fields of a rectangular dislocation loop in an isotropic solid that is a semi-infinite medium (half medium) are developed here for a Volterra-type dislocation. Specifically, the loop is parallel to the free surface of the solid. The elastic fields of the dislocation loop are developed by integrating the displacement equation of infinitesimals dislocation loops over a finite rectangular loop area below the free surface. The strains and stress then follow from the small strain tensor and Hooke’s law for isotropic materials, respectively. In this paper, analytical verification and numerical verification for the elastic fields are both demonstrated. Equilibrium equations and strain compatibility equations are applied in the verification. Also, a comparison with a newly-developed numerical method for dislocations near a free surface is performed as well. The developed solution is a function of the loop depth beneath the surface and can be used as a fundamental solution to solve elasticity, plasticity or dislocation problems.
Cite this paper: Li, L. , Khraishi, T. and Siddique, A. (2021) The Strain/Stress Fields of a Subsurface Rectangular Dislocation Loop Parallel to the Surface of a Half Medium: Analytical Solution with Verification. Journal of Applied Mathematics and Physics, 9, 146-175. doi: 10.4236/jamp.2021.91011.
References

[1]   Hull, D. and Bacon, D.J. (2011) Introduction to Dislocations. Butterworth-Heinemann, Oxford.
https://doi.org/10.1016/C2009-0-64358-0

[2]   Hirth, J.P. and Lothe, J. (1982) Theory of Dislocations. Krieger Publishing Company, Malabar.

[3]   Weertman, J. and Weertman, J.R. (1992) Elementary Dislocation Theory. Oxford University Press, Oxford.

[4]   Kroupa, F. (1960) Circular Edge Dislocation Loop. Cechoslovackij fiziceskij zurnal B, 10, 284-293.
https://doi.org/10.1007/BF02033533

[5]   Bullough, R. and Newman, R.C. (1960) The Spacing of Prismatic Dislocation Loops. The Philosophical Magazine, 5, 921-926.
https://doi.org/10.1080/14786436008238311

[6]   Keller, J.M. (1957) Unpublished.

[7]   Kröner, E. (1958) Kontinuumstheorie Der Versetzungen Und Eigenspannungen. Springer-Verlag, Berlin.

[8]   Kroupa, F. (1962) Interaction between Prismatic Dislocation Loops and Straight Dislocations. Part I. The Philosophical Magazine, 7, 783-801.
https://doi.org/10.1080/14786436208212669

[9]   Marcinkowski, M.J. and Sree Harsha, K.S. (1968) Properties of Finite Circular Dislocation Glide Loops. Journal of Applied Physics, 39, 1775-1783.
https://doi.org/10.1063/1.1656429

[10]   Khraishi, T.A., Hirth, J.P., Zbib, H.M. and Khaleel, M.A. (2000) The Displacement, and Strain—Stress Fields of a General Circular Volterra Dislocation Loop. International Journal of Engineering Science, 5, 251-266.
https://doi.org/10.1016/S0020-7225(99)00038-5

[11]   Khraishi, T.A., Zbib, H.M., Hirth, J.P. and de la Rubia, T.D. (2000) The Stress Field of a General Circular Volterra Dislocation Loop: Analytical and Numerical Approaches. Philosophical Magazine Letters, 80, 95-105.
https://doi.org/10.1080/095008300176353

[12]   Khraishi, T.A. and Zbib, H.M. (2002) The Displacement Field of a Rectangular Volterra Dislocation Loop. Philosophical Magazine Letters, 82, 265-277.
https://doi.org/10.1080/09500830210125770

[13]   Demir, I., Hirth, J.P. and Zbib, H.M. (1992) Extended Stress Field around a Cylindrical Crack Using the Theory of Dislocation Pile-Ups. International Journal of Engineering Science, 30, 829-845.
https://doi.org/10.1016/0020-7225(92)90013-7

[14]   Demir, I., Hirth, J.P. and Zbib, H.M. (1992) The Somigliana Ring Dislocation. Journal of Elasticity, 28, 223-246.
https://doi.org/10.1007/BF00132212

[15]   Demir, I. and Khraishi, T.A. (2005) The Torsional Dislocation Loop and Mode III Cylindrical Crack. Journal of Mechanics, 21, 109-116.
https://doi.org/10.1017/S1727719100004585

[16]   Yoffe, E.H. (1961) A Dislocation at a Free Surface. The Philosophical Magazine, 6, 1147-1155.
https://doi.org/10.1080/14786436108239675

[17]   Baštecká, J. (1964) Interaction of Dislocation Loop with Free Surface. Cechoslovackij Fiziceskij Zurnal B, 14, 430-442.
https://doi.org/10.1007/BF01689476

[18]   Chou, Y.T. (1963) Energy of Circular Dislocation Loops in Thin Plates. Acta Metallurgica, 13, 829-834.
https://doi.org/10.1016/0001-6160(63)90051-8

[19]   Baštecká, J. and Kroupa, F. (1964) Elastic Interaction of Dislocation Loops and Point Defects. Cechoslovackij Fiziceskij Zurnal B, 14, 443-453.
https://doi.org/10.1007/BF01689477

[20]   Bacon, D.J. and Groves, P.P. (1970) The Dislocation in a Semi-Infinite Isotropic Medium. In: Bacon, D.J. and Groves, P.P., Ed., Fundamental Aspects of Dislocation Theory, Witt, R. and Bullough, R., Inc., Washington DC, 35-45.

[21]   Groves, P.P. and Bacon, D.J. (1970) The Dislocation Loop Near a Free Surface. Philosophical Magazine, 22, 83-91.
https://doi.org/10.1080/14786437008228153

[22]   Jing, P., Khraishi, T.A., Zepeda-Ruiz, L.A. and Wirth, B.D. (2009) The Elastic Fields of Sub-Surface Dislocation Loops: A Comparison between Analytical Continuum-Theory Solutions and Atomistic Calculations. International Journal of Theoretical and Applied Multiscale Mechanics, 1, 71-85.
https://doi.org/10.1504/IJTAMM.2009.022472

[23]   Maurissen, Y. and Capella, L. (1974) Stress Field of a Dislocation Segment Parallel to a Free Surface. Philosophical Magazine, 29, 1227-1229.
https://doi.org/10.1080/14786437408226608

[24]   Maurissen, Y. and Capella, L. (1974) Stress Field of a Dislocation Segment Perpendicular to a Free Surface. Philosophical Magazine, 30, 679-683.
https://doi.org/10.1080/14786439808206591

[25]   Comninou, M. and Dundurs, J. (1975) The Angular Dislocation in a Half Space. Journal of Elasticity, 19, 203-216.
https://doi.org/10.1007/BF00126985

[26]   Lothe, J., Indenbom, V.L. and Chamrov, V.A. (1982) Elastic Field and Self-Force of Dislocations Emerging at the Free Surfaces of an Anisotropic Half-Space. Phys. Status Solidi (B), 20, 671-677.
https://doi.org/10.1002/pssb.2221110231

[27]   Gosling, T.J. and Willis, J.R. (1994) A Line-Integral Representation for the Stresses Due to an Arbitrary Dislocation in an Isotropic Half-Space. Journal of the Mechanics and Physics of Solids, 42, 1199-1221.
https://doi.org/10.1016/0022-5096(94)90032-9

[28]   Khraishi, T. A., Zbib, H. M. and de la Rubia, T. D. (2001) The Treatment of Traction free Boundary Condition in Three-Dimensional Dislocation Dynamics using Generalized Image Stress Analysis. Materials Science and Engineering: A, 309-310, 283-287.
https://doi.org/10.1016/S0921-5093(00)01727-5

[29]   Khraishi, T. A. and Zbib, H. M. (2002) Free Surface Effects in 3D Dislocation Dynamics: Formulation and Modeling. Journal of Engineering Materials and Technology, 124, 342-351.
https://doi.org/10.1115/1.1479694

[30]   Yan, L., Khraishi, T. A., Shen, Y.-L. and Horstemeyer, M. F. (2004,) A Distributed Dislocation Method for Treating Free-Surface Image Stresses in 3D Dislocation Dynamics Simulations. Modelling and Simulation in Materials Science and Engineering, 12, 289-301.
https://doi.org/10.1088/0965-0393/12/4/S01

[31]   Siddique, A.B. and Khraishi, T. A. (2020) Numerical Methodology for Treating Static and Dynamic Dislocation Problems Near a Free Surface. Journal of Physics Communications, 4, Article ID: 055005.
https://doi.org/10.1088/2399-6528/ab8ff9

[32]   Lerma, J.D., Khraishi, T. and Shen, Y.L. (2007) Elastic Fields of 2D and 3D Misfit Particles in an Infinite Medium. Mechanics Research Communications, 34, 31-43.
https://doi.org/10.1016/j.mechrescom.2006.06.002

[33]   Lerma, J., Khraishi, T., Kataria, S. and Shen, Y.L. (2015) Distributed Dislocation Method for Determining Elastic Fields of 2D and 3D Volume Misfit Particles in Infinite Space and Extension of the Method for Particles in Half Space. Journal of Mechanics, 31, 249-260.
https://doi.org/10.1017/jmech.2014.85

[34]   Khraishi, T. A. and Shen, Y.-L. (2011) Introductory Continuum Mechanics with Applications to Elasticity. University Readers/Cognella, San Diego.

 
 
Top