Back
 MSA  Vol.11 No.12 , December 2020
Comprehensive Analysis of CuIn1-xGaxSe2 Based Solar Cells with Zn1-yMgyO Buffer Layer
Abstract: The development of cadmium-free CIGS solar cells with high conversion efficiency is crucial due to the toxicity of cadmium. Zinc-based buffer layers seem to be the most promising. In this paper, a numerical analysis using SCAPS-1D software was used to explore the Zn(Mg,O) layer as an alternative to the toxic CdS layer. The effect of several properties such as thickness, doping, Mg concentration of the Zn(Mg,O) layer on the current-voltage parameters was explored and their optimal values were proposed. The simulation results reveal that the optimal value of the ZMO layer thickness is approximately 40 nm, the doping at 1017 cm-3 and an Mg composition between 0.15 and 0.2. In addition, the effect of Gallium (Ga) content in the absorber as well as the Zn(Mg,O)/CIGS interface properties on the solar cell’s performance was examined. The results show that contrary to the CdS buffer layer, the best electrical characteristics of the ZMO/CIGS heterojunction are obtained using a Ga-content equal to 0.4 and high interface defect density or unfavorable band alignment may be the causes of poor performances of Zn(Mg,O)/CIGS solar cells in the case of low and high Mg-contents.
Cite this paper: Ouédraogo, S. , Kébré, M. , Ngoupo, A. , Oubda, D. and Zougmoré, F. (2020) Comprehensive Analysis of CuIn1-xGaxSe2 Based Solar Cells with Zn1-yMgyO Buffer Layer. Materials Sciences and Applications, 11, 880-892. doi: 10.4236/msa.2020.1112058.
References

[1]   Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T. and Sugimoto, H. (2019) Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell with a New World Record Efficacy of 23.35%. IEEE Journal of Photovoltaics, 9, 1863-1867.
https://doi.org/10.1109/JPHOTOV.2019.2937218

[2]   Stamford, L. and Azapagic, A. (2019) Environmental Impacts of Copper Indium Gallium Selenide (CIGS) Photovoltaics and the Elimination of Cadmium through Atomic Layer Deposition. Science of the Total Environment, 688, 1092-1088.
https://doi.org/10.1016/j.scitotenv.2019.06.343

[3]   Siebentritt, S. (2011) What Limits the Efficiency of Chalcopyrite Solar Cells? Solar Energy Materials and Solar Cells, 95, 1471-1476.
https://doi.org/10.1016/j.solmat.2010.12.014

[4]   Platzer-Bjorkman, C., Lu, J., Kessler, J. and Stolt, L. (2003) Interface Study of CuInSe2/ZnO and Cu(In,Ga)Se2/ZnO Devices Using ALD ZnO Buffer Layers. Thin Solid Films, 431-432, 321-325.
https://doi.org/10.1016/S0040-6090(03)00229-3

[5]   Djinkwi Wanda, M., Ouédraogo, S. and Ndjaka, J.M.B. (2019) Theoretical Analysis of Minority Carrier Lifetime and Cd-Free Buffer Layers on the CZTS Based Solar Cell Performances. Optik, 183, 284-293.
https://doi.org/10.1016/j.ijleo.2019.02.058

[6]   Hultqvist, A., Platzer-Bjorkman, C., Pettersson, J., Torndahl, T. and Edoff, M. (2009) CuGaSe2 Solar Cells Using Atomic Layer Deposited Zn(O,S) and (Zn,Mg) O Buffer Layers. Thin Solid Films, 517, 2305-2308.
https://doi.org/10.1016/j.tsf.2008.10.109

[7]   Hariskos, D., Fuchs, B., Menner, R., Naghavi, N., Hubert, C., Lincot, D. and Powalla, M. (2009) The Zn(S,O,OH)/ZnMgO Buffer in Thin-Film Cu(In,Ga)(Se,S)2-Based Solar Cells Part II: Magnetron Sputtering of the ZnMgO Buffer Layer for In-Line Co-Evaporated Cu(In,Ga)Se2 Solar Cells. Progress in Photovoltaics: Research and Applications, 17, 479-488.
https://doi.org/10.1002/pip.897

[8]   Saadat, M., Moradi, M. and Zahedifar, M. (2015) Optimization of Zn(O,S)/(Zn,Mg)O Buffer Layer in Cu(In,Ga)Se2 Based Photovoltaic Cells. Journal of Materials Science: Materials in Electronics, 27, 1130-1133.
https://doi.org/10.1007/s10854-015-3861-y

[9]   Niemegeers, A. and Burgelman, M. (1996) Numerical Modelling of AC-Characteristics of CdTe and CIS Solar Cells. Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference 1996, Washington, DC, 13-17 May 1996, 901-904.
https://doi.org/10.1109/PVSC.1996.564274

[10]   Hernández-Como, N. and Morales-Acevedo, A. (2010) Simulation of Hetero-Junction Silicon Solar Cells with AMPS-1D. Solar Energy Materials and Solar Cells, 94, 62-67.
https://doi.org/10.1016/j.solmat.2009.05.021

[11]   Dagamseh, A.M.K., Vet, B., Sutta, P. and Zeman, M. (2010) Modelling and Optimization of a-Si: H Solar Cells with ZnO: Al Back Reflector. Solar Energy Materials and Solar Cells, 94, 2119-2123.
https://doi.org/10.1016/j.solmat.2010.06.039

[12]   Basore, P.A. and Clugston, D.A. (1996) PC1D Version 4 for Windows: From Analysis to Design. Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference 1996, Washington, DC, 13-17 May 1996.
https://doi.org/10.1109/PVSC.1996.564023

[13]   Singh, S., Kumar, S. and Dwivedi, N. (2012) Band Gap Optimization of p-i-n Layers of a-Si:H by Computer Aided Simulation for Development of Efficient Solar Cell. Solar Energy, 86, 1470-1476.
https://doi.org/10.1016/j.solener.2012.02.007

[14]   Ouédraogo, S., Zougmoré, F. and Ndjaka, J.M.B. (2014) Computational Analysis of the Effect of the Surface Defect Layer (SDL) Properties on Cu(In,Ga)Se2-Based Solar Cell Performances. Journal of Physics and Chemistry of Solids, 75, 688-695.
https://doi.org/10.1016/j.jpcs.2014.01.010

[15]   Pettersson, J., Edoff, M. and Platzer-Bjorkman, C. (2012) Electrical Modeling of Cu(In,Ga)Se2 Cells with ALD-Zn1-xMgxO Buffer Layers. Journal of Applied Physics, 111, 014509.
https://doi.org/10.1063/1.3672813

[16]   Pettersson, J., Platzer-Bjorkman, C., Hultqvist, A., Zimmermann, U. and Edoff, M. (2010) Measurements of Photo-Induced Changes in the Conduction Properties of ALD-Zn1-xMgxO Thin Films. Physica Scripta, 2010, 014010.
https://doi.org/10.1088/0031-8949/2010/T141/014010

[17]   Tobbeche, S., Kalache, S., Elbar, M., Kateb, M.N. and Serdouk, M.R. (2019) Improvement of the CIGS Solar Cell Performance: Structure Based on a ZnS Buffer Layer. Optical and Quantum, Electronics, 51, Article No. 284.
https://doi.org/10.1007/s11082-019-2000-z

[18]   Sharbati, S., Keshmiri, S.H., McGoffin, J.T. and Geisthardt, R. (2014) Improvement of CIGS Thin-Film Solar Cell Performance by Optimization of Zn(O,S) Buffer Layer Parameters. Applied Physics A, 118 1259-1265.
https://doi.org/10.1007/s00339-014-8825-1

[19]   Minemoto, T., Matsui, T., Takakura, H., Hamakawa, Y., Negami, T., Hashimoto, Y. and Kitagawa, M. (2001) Theoretical Analysis of the Effect of Conduction Band Offset of Window/CIS Layers on Performance of CIS Solar Cells Using Device Simulation. Solar Energy Materials and Solar Cells, 67, 83-88.
https://doi.org/10.1016/S0927-0248(00)00266-X

[20]   Pettersson, J., Platzer-Bjorkman, C., Zimmermann, U. and Edoff, M. (2011) Baseline Model of Graded-Absorber Cu(In,Ga)Se2 Solar Cells Applied to Cells with Zn1-x MgxO Buffer Layers. Thin Solid Films, 519, 7476-7480.
https://doi.org/10.1016/j.tsf.2010.12.141

[21]   Enayati Maklavani, S. and Mohammadnejad, S. (2020) Enhancing the Open-Circuit Voltage and Efficiency of CZTS Thin-Film Solar Cells Via band-offset Engineering. Optical and Quantum Electronics, 52, Article No. 72.
https://doi.org/10.1007/s11082-019-2180-6

[22]   Gloeckler, M. and Sites, J.R. (2005) Efficiency limitations for Wide-Band-Gap Chalcopyrite Solar Cells. Thin Solid Films, 480-481, 241-245.
https://doi.org/10.1016/j.tsf.2004.11.018

[23]   Minemoto, T., Hashimoto, Y., Satoh, T., Negami, T., Takakura, H. and Hamakawa, Y. (2001) Cu(In,Ga)Se2 Solar Cells with Controlled Conduction Band Offset of Window/Cu(In,Ga)Se2 Layers. Journal of Applied Physics, 89, 8327-8330.
https://doi.org/10.1063/1.1366655

[24]   Minemoto, T., Hashimoto, Y., Shamskolahi, W., Satoh, T., Negami, T., Takakura, H. and Hamakawa, Y. (2003) Control of Conduction Band Offset in Wide-Gap Cu(In,Ga)Se2 Solar Cells. Solar Energy Materials and Solar Cells, 75, 121-126.
https://doi.org/10.1016/S0927-0248(02)00120-4

 
 
Top