JMP  Vol.11 No.12 , December 2020
Space-Time Curvature Mode Quanta
Abstract: Einstein theorized that Gravity is not a force derived from a potential that acts across a distance. It is a distortion of space and time in which we live by masses and energy. Consistent with Einstein’s theory, a model of space-time curvature modes and associated curvature quanta in slightly warped space-time generated by a light Photon is derived. Both a Schr?dinger and a Second Quantized representation of the space-time curvature mode quanta are calculated and are fourth rank tensors. The eigenvalues of these equations are radii of curvature, not energy. The Eigenfunctions are linear functions of the components of the tensor that describes the curvature of space-time.
Cite this paper: Kornreich, P. (2020) Space-Time Curvature Mode Quanta. Journal of Modern Physics, 11, 1977-1992. doi: 10.4236/jmp.2020.1112125.

[1]   Einstein, A., Lorentz, H.A., Weyl, H. and Minkowski, H. (1952) The Principles of Relativity. Dover Publishing Co., Mineola.

[2]   Kornreich, P. (2019) Journal of Modern Physics, 10, 1674-1695.

[3]   Abbott, B.P., et al. (2016) Physical Review Letters, 116, Article ID: 061102.

[4]   Liao, S.-K., Young, H.-L., Liu, C., Shentu, G.-L., Li, D.-D., Lin, J., Dai, H., Zhao, S.-Q., Li, B., Guan, J.-Y., Chen, W., Lin, Y.-H., Pan, G.-S., Pelc, J.S., Fejer, M.M., Liu, W.-Y., Yin, J., Ren, J.-G., Wang, X.-B., Zhang, Q., Peng, C.-Z. and Pan, J.-W. (2017) Nature Photonics, 11, 509-513.

[5]   Krenn, M., Malik, M., Erhard, M. and Zeilinger, A. (2017) Philosophical Transactions of the Royal Society A, 375, Article ID: 20150442.

[6]   Shankland, R.S. (1964) American Journal of Physics, 32, 16-35.

[7]   Sakharov, A.D. (1967) Doklady Akademii Nauk SSSR, 177, 70-71.

[8]   Puthoff, H.E. (1989) Physical Review A, 39, 2333-2342.

[9]   Boccaletti, D., De Sabbata, V., Fortini, P. and Gualdi, C. (1970) Il Nuovo Cimento B (1965-1970), 70, 129-146.

[10]   DeWitt, B.C. (1967) Physical Review, 160, 1113-1147.

[11]   DeWitt, B.C. (1967) Physical Review, 162, 1195-1239.

[12]   DeWitt, B.C. (1967) Physical Review, 162, 1239-1256.

[13]   dos Santos, W.C. (2016) Introduction to Einstein-Maxwell Equations and Rainich Conditions.

[14]   Rovelli, C. (2011) Zakopane Lectures on Loop Gravity. Centre de Physique Theorique Luminy, Case 907, F-13288, EU.

[15]   Engle, J., Pereira, R. and Rovelli, C. (2007) Physical Review Letters, 99, Article ID: 161301.

[16]   Schwarzschild, K. (1916) über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, 189.

[17]   Eddington, A.S. (1922) Mathematical Theory of Relativity. UP, Cambridge, 85-93.

[18]   McDonald, K.T. (2013) Relativistic Harmonic Oscillator. Joseph Henry Laboratory, Princeton University, Princeton.

[19]   Loveridge, C.L. (2004) Physical and Geometric Interpretation of the Ricci Tensor and Scalar Curvature.

[20]   Wysin, G.M. (2011) Quantization of the Free Electromagnetic Field, Photons and Operators. Department of Physics, Kansas State University, Manhattan.