Back
 AS  Vol.11 No.12 , December 2020
Evaluation of the Effect of Refined Extracts of Matricaria recutita L and Chrysanthemum coronarium L, Proposed as Bio-Pesticides for Agricultural Use, Determining the Variation of Biomarkers of Oxidative and Hepatotoxic Stress in Acutely Exposed Rats
Abstract: Chamomile (Matricaria recutita L) and Chrysanthemum (Chrysanthemum coronarium L. (Garland)) are plants belonging to the family Asteraceae. The pharmacological properties of these herbs result from interactions among their many components. Of these, over 120 secondary metabolites with pharmacological and/or potential pesticide activity have been identified. The diverse chemical and biological characteristics of this set of compounds, i.e., essential oils and organic extracts of genera Matricaria and Chrysanthemum, have been shown to have particular pesticidal effects, especially those rich in pyrethroids. This work characterizes chamomile and chrysanthemum extracts for their pesticidal properties and their effects following acute exposure in rats. Results show hepatotoxic and oxidative stress-inducing effects in the livers of rats exposed to C. coronarium extracts, but not those of M. recutita.
Cite this paper: Mandiola-Quililongo, C. , Soto, C. , Gática, C. , Arriaza, M. , Buono-Core Varas, G. and Fica, J. (2020) Evaluation of the Effect of Refined Extracts of Matricaria recutita L and Chrysanthemum coronarium L, Proposed as Bio-Pesticides for Agricultural Use, Determining the Variation of Biomarkers of Oxidative and Hepatotoxic Stress in Acutely Exposed Rats. Agricultural Sciences, 11, 1143-1158. doi: 10.4236/as.2020.1112075.
References

[1]   Sharafzadeh, S. and Alizadeh, O. (2011) German and Roman Chamomile. Journal of Applied Pharmaceutical Science, 1, 1-5.

[2]   Formisano, C., Delfine, S., Oliviero, F., Tenore, G.C., Rigano, D. and Senatore, F. (2015) Correlation among Environmental Factors, Chemical Composition and Antioxidative Properties of Essential Oil and Extracts of Chamomile (Matricaria chamomilla L.) Collected in Molise (South-Central Italy). Industrial Crops and Products, 63, 256-263.
https://doi.org/10.1016/j.indcrop.2014.09.042

[3]   Buono-Core, G.E, Nuñez, V., Lucero, A., Vargas, R. and Jullian, C. (2011) Structural Elucidation of Bioactive Principles in Floral Extracts of German Chamomille (Matricaria Recutita L). Journal of the Chilean Chemical Society, 56, 549-553.
http://dx.doi.org/10.4067/S0717-97072011000100006

[4]   Abd El Raheim, D. (2014) Biological Activity of Chrysanthemum coronarium L. Extracts. Annual Research & Review in Biology, 4, 2617-2627.
https://doi.org/10.9734/ARRB/2014/10112

[5]   Cavieres, M.F. (2004) Exposición a Pesticidas y Toxicidad Reproductiva y del Desarrollo en Humanos: Análisis de la Evidencia Epidemiológica y Experimental. Revista Médica de Chile, 134, 873-879.
http://dx.doi.org/10.4067/S0034-98872004000700014

[6]   Gögera, G., Demircib, B., Ilgınc, S. and Demirciba, F. (2018) Antimicrobial and Toxicity Profiles Evaluation of the Chamomile (Matricaria recutita L.) Essential Oil Combination with Standard Antimicrobial Agents. Industrial Crops and Products, 120, 279-285.
https://doi.org/10.1016/j.indcrop.2018.04.024

[7]   Jayaraj, S. and Rabindra, R.J. (1993) The Local View on the Role of Plant Protection in Sustainable Agriculture in India. In: Chadwick, D.J. and Marsh, J., Eds., Ciba Foundation Symposium 177—Crop Protection and Sustainable Agriculture, 168-180.
https://doi.org/10.1002/9780470514474.ch11

[8]   Ehrlich, P.R. and Ehrlich, A.H. (1997) Ehrlichs’s Fables. Technology Review.
https://www.technologyreview.com/s/400001/ehrlichs-fables/

[9]   Teixeira da Silva, J.A. (2004) Mining the Essential Olis of the Anthemideae. African Journal of Biotechnology, 3, 706-720.

[10]   United States Environmental Protection Agency (2000) Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures. Vol. EPA/ 630/R-00/002, United States Environmental Protection Agency, Washington DC.

[11]   Mahady, G.B., Pendland, S.L., Stoia, A., Hamill, F.A., Fabricant, D., Dietz, B.M. and Chadwick, L.R. (2005) In Vitro Susceptibility of Helicobacter Pylori to Botanical Extracts Used Traditionally for the Treatment of Gastrointestinal Disorders. Phytotherapy Research, 19, 988-991.
https://doi.org/10.1002/ptr.1776

[12]   Gawde, A., Cantrell, C.L., Zheljazkov, V.D., Astatkie, T. and Schlegel, V. (2014) Steam Distillation Extraction Kinetics Regression Model Sto Predict Essential Oil Ield, Composition, and Bioactivity of Chamomile Oil. Industrial Crops and Products, 58, 61-67.
https://doi.org/10.1016/j.indcrop.2014.04.001

[13]   Lucero, A., Rebolledo, C. and Buono-Core, G.E. (2012) Effect of Some Natural Uv-Absorbers on the Photostabilization of Active Ingredients in German Chamomille Floral Extracts: Part I. Journal of the Chilean Chemical Society, 57, 1309-1212.
http://dx.doi.org/10.4067/S0717-97072012000300024

[14]   Skirvin, D. and Stavrinides, M. (2003) The Effect of Chrysanthemum Leaf Trichome Density and Prey Spatial Distribution on Predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae). Bulletin of Entomological Research, 93, 343-350.
https://doi.org/10.1079/BER2003243

[15]   LaForge, F.B. and Markwood, L.N. (1938) Organic Insecticides. Annual Review of Biochemistry, 7, 473-490.
https://doi.org/10.1146/annurev.bi.07.070138.002353

[16]   Casida, J.E. (1980) Pyrethrum Flowers and Pyrethroid Insecticides. Environmental Health Perspectives, 34, 189-202.
https://doi.org/10.1289/ehp.8034189

[17]   Elliott, M. and Janes, N.F. (1978) Synthetic Pyrethroids—A New Class of Insecticide. Chemocal Society Reviews, 7, 473-505.
https://doi.org/10.1039/cs9780700473

[18]   Casida, J.E. and Quistad, G.B. (1998) Golden Age of Insecticide Research: Past, Present, or Future? Annual Review of Entomology, 43, 1-16.
https://doi.org/10.1146/annurev.ento.43.1.1

[19]   Amweg, E.L., Weston, D.P. and Ureda, N.M. (2005) Use and Toxicity of Pyrethroid Pesticides in the Central Valley, California USA. Environ. Environmental Toxicology and Chemistry, 24, 966-972.
https://doi.org/10.1897/04-146R1.1

[20]   Gammon, D.W., Brown, M.A. and Casida, J.E. (1981) Two Classes of Pyrethroid Action in the Cockroach. Pesticide Biochemistry and Physiology, 15, 181-191.
https://doi.org/10.1016/0048-3575(81)90084-5

[21]   Gray, A.J. (1985) Pyrethroid Structure-Toxicity Relationships in Mammals. Neurotoxicology, 6, 127-137.

[22]   Lawrence, L.J. and Casida, J.E. (1982) Pyrethroid Toxicology: Mouse Intracerebral Structure-Toxicity Relationships. Pesticide Biochemistry and Physiology, 18, 9-14.
https://doi.org/10.1016/0048-3575(82)90082-7

[23]   Wolansky, M.J., Gennings, C. and Crofton, K.M. (2006) Relative Potencies for Acute Effects of Pyrethroids on Motor Function in Rats. Toxicological Sciences, 89, 271-277.
https://doi.org/10.1093/toxsci/kfj020

[24]   Peña, C.E., Carter, D.E. and Fierro, F.A. (2001) Toxicología Ambiental: Evaluación de Riesgos y Restauración Ambiental. The University of Arizona, Tucson.
https://es.slideshare.net/EdwinMamaniVilcapaza/toxicologia-ambiental-evaluacin-de-riesgos-y-restauracin-ambiental

[25]   Tomei, F., Biagi, M., Baccolo, T.P., Tomao, E., Giuntoli, P. and Rosati, M.V. (1998) Liver Damage among Enviromental Disinfestation Workers. Journal of Occupational Health, 40, 193-197.
https://doi.org/10.1539/joh.40.193

[26]   Sakr, S.A. and Hanafy, S.M. (2002) Histopathological Alterations in the Liver and Kidney of Toads (Bufo regularis) Intoxicated with a Pyrethroid Insecticide. Journal of Biological Sciences, 2, 208-211.
https://dx.doi.org/10.3923/jbs.2002.208.211

[27]   Limdi, J.K. and Hyde, G.M. (2003) Evaluation of Abnormal Liver Function Tests. Postgraduate Medical Journal, 79, 307-312.
https://doi.org/10.1136/pmj.79.932.307

[28]   Sakr, S.A., Andel, S., Hany, A. and Salina, M.E. (2004) Exploring Hepatotoxicity of Benomyl: Histological and Histochemical Study on Albino Rats. Journal of Medical Sciences, 4, 77-83.
https://dx.doi.org/10.3923/jms.2004.77.83

[29]   Piñeiro-Carrero, V.M. and Piñeiro, E.O. (2004) Liver. Pediatrics, 113, 1097-1106.

[30]   Hakkola, J., Tanaka, E. and Pelkonen, O. (1998) Developmental Expresión of Cytochrome P450 Enzymes in Human Liver. Pharmacology & Toxicology, 82, 209-217.
https://doi.org/10.1111/j.1600-0773.1998.tb01427.x

[31]   Prough, R.A., Burke, M.D. and Mayer, R.T. (1978) Direct Fluorometric Methods for Measuring Mixed-Function Oxidase Activity. Methods in Enzymology, 52, 372-377.
https://doi.org/10.1016/S0076-6879(78)52041-7

[32]   Yasui, H., Hayashi, S. and Sakurai, H. (2005) Possible Involvement of Singlet Oxygen as Multiple Oxidants in P450 Catalytic Reactions. Drug Metabolism and Pharmacokinetics, 20, 1-13.
https://doi.org/10.2133/dmpk.20.1

[33]   Nelson, D.R., Koymans, L., Kamataki, T., Stegeman, J.J., Feyereisen, R., Waxnan, D.J., Waterman, M.R., Gotoh, O., Coon, M.J., Estabrook, R.W., Gunsalus, I.C and Nebert, D.W. (1996) P450 Superfamily Update on New Sequences, Gene Mapping, Accession Numbers and Nomenclature. Pharmacogenetics, 6, 1-42.
https://doi.org/10.1097/00008571-199602000-00002

[34]   Nelson, D.R. (1999) Cytochrome P450 and Individuality of Species. Archives of Biochemistry and Biophysics, 369, 1-10.
https://doi.org/10.1006/abbi.1999.1352

[35]   Raunio, H., Hakkola, J., Hukkanen, J., Lassila Paivarinka, K., Pelkonen, O., Anttila, S., Piipari, R., Boobis, A.R. and Edwards, R.J. (1999) Expression of Xenobiotic-Metabolizing CYPs in Human Pulmonary Tissue. Experimental and Toxicologic Pathology, 51, 412-417.
https://doi.org/10.1016/S0940-2993(99)80031-1

[36]   Guengerich, F.P. (2001) Uncommon P450 Catalysed Reaction. Current Drug Metabolism, 2, 93-115.
https://doi.org/10.2174/1389200013338694

[37]   Coon, M.J., Ding, X.X., Pernecky, S.J. and Vaz, A.D. (1992) Cytochrome P450: Progress and Predictions. The FASEB Journal, 6, 669-673.
https://doi.org/10.1096/fasebj.6.2.1537454

[38]   Himeo, S. and Imura, N. (2000) New Aspects of Physiological and Pharmacological Roles of Selenium. Journal of Health Science, 46, 393-398.
https://doi.org/10.1248/jhs.46.393

[39]   Denison, M.S. and Whitlock, J.P. (1995) Xenobiotic-Inducible Transcription of Cytocchromme P450 Genes. Journal of Biological Chemistry, 270, 18175-18178.
https://doi.org/10.1074/jbc.270.31.18175

[40]   Tamási, V., Vereckey, L., Falus, A. and Monostory, K. (2003) Some Aspects of Interindividual Variations in the Metabolism of Xenobiotics. Inflammation Research, 52, 322-333.
https://doi.org/10.1007/s00011-003-1186-4

[41]   Monod, J., Wyman, J. and Changeux, J.P. (1965) On the Nature of Allosteric Transitions: A Plausible Model. Journal of Molecular Biology, 12, 88-118.
https://doi.org/10.1016/S0022-2836(65)80285-6

[42]   Greenwald, R.A. (1989) Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, 294-295.
https://doi.org/10.1201/9781351072922

[43]   Giray, B., Gubay, A. and Hincal, F. (2001) Cypermetrin-Induced Oxidative Stress in Rat Brain and Liver Is Prevented by Vitamin E or Allopurinol. Toxicology Letters, 118, 139-146.
https://doi.org/10.1016/S0378-4274(00)00277-0

[44]   Zoccarato, F., Cavallini, L and Alexandre, A. (2004) Respiration-Dependent Removal of Exogenous H2O2 in Brain Mitochondria Inhibition by Ca2+. Journal of Biological Chemistry, 279, 4166-4174.
https://doi.org/10.1074/jbc.M308143200

[45]   Kennedy, G.L., Ferenz, R.L. and Burgess, B.A. (1986) Estimation of Acute Oral Toxicity in Rats by Determination of the Approximate Lethal Dose Rather than the LD50. Journal of Applied Toxicology, 6, 145-148.
https://doi.org/10.1002/jat.2550060302

[46]   Sumie, Y., Masanori, H., Masu, T., Kazuo, K., Jun, S. and Masao, N. (1990) A Simple Method for Screening Assessment of Acute Toxicity of Chemicals. Archives of Toxicology, 64, 262-268.
https://doi.org/10.1007/BF01972985

[47]   Rice-Evans, C.A., Diplock, A.T. and Symons M.C.R. (1991) Techniques in Free Radical Research. In: Burdon, R.H. and van Knip-Penberg, P.H., Eds., Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 22, Elsevier, Amsterdam, 51-100.

[48]   Videla, L.A. and Valenzuela, A. (1982) Alcohol Ingestion, Liver Glutathione and Lipoperoxidation: Metabolic Interrelations and Pathological Implications. Life Sciences, 31, 2395-2407.
https://doi.org/10.1016/0024-3205(82)90743-3

[49]   Galleano, M. and Puntarulo, S. (1995) Role of Antioxidants on the Erythrocytes Resistance to Lipid Peroxidation after Acute Iron Overload in Rats. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1271, 321-326.
https://doi.org/10.1016/0925-4439(95)00049-A

[50]   Porter, T.D. and Coon, M.J. (1991) Cytochrome P450, Multiplicity of Isoforms, Substrates, and Catalytic and Regulatory Mechanism. Journal of Biological Chemistry, 266, 13469-13472.

[51]   Tanger, O., Jonsson, J. and Orrenius, S. (1973) Isolation of Rat Liver Microsomes by Gel Filtration. Analytical Biochemistry, 54, 597-603.
https://doi.org/10.1016/0003-2697(73)90392-8

[52]   Gutiérrez, A.M., Reboredo, G.R., Arcemis, C.J. and Catalá, A. (2000) Non- Enzymatic Lipid Peroxidation of Microsomes and Mitochondria Isolated from Liver and Heart of Pigeon and Rat. The International Journal of Biochemistry & Cell Biology, 32, 73-79.
https://doi.org/10.1016/S1357-2725(99)00105-3

[53]   Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry, 193, 265-175.

[54]   Okey, A.B. (1990) Enzyme Induction in the Cytochrome P450 System. Pharmacology & Therapeutics, 45, 241-298.
https://doi.org/10.1016/0163-7258(90)90030-6

[55]   Dhawan, A., Parmar, D., Dayal, D. and Seth, P.K. (1999) Cytochrome P450 (P450) Isoenzyme Specific Dealkylation of Alkoxyresorufins in Rat Brain Microsomes. Molecular and Cellular Biochemistry, 200, 169-176.
https://doi.org/10.1023/A:1007026800114

[56]   Guengerich, F.P., Martin, M.V., Sohl, C.D. and Cheng, Q. (2009) Measurement of Cytochrome P450 and NADPH-Cytochrome P450 Reductase. Nature Protocols, 4, 1245-1251.
https://doi.org/10.1038/nprot.2009.121

[57]   Nims, R.W. and Lubet, R.A. (1995) Induction of Cytochrome P450 in the Norway rat, Rattus Norvegicus, following Exposure to Potential Environmental Contaminants. Journal of Toxicology and Environmental Health, 46, 271-292.
https://doi.org/10.1080/15287399509532035

[58]   Ainslie, R., Shill, J.P. and Neet, K.E. (1972) Transients and Cooperativity. A Slow Transition Model for Relating Transients and Cooperative Kinetics of Enzymes. Journal of Biological Chemistry, 247, 7088-7096.

 
 
Top