Back
 JMP  Vol.11 No.11 , November 2020
Motion in Clifford Space
Abstract: Clifford algebra as an approach of geometrization of physics plays a vital role in unification of micro-physics and macro-physics, which leads to examine the problem of motion for different objects. Equations of charged and spinning of extended objects are derived. Their corresponding deviation equations as an extension of geodesics and geodesic deviation of vectors in Riemannian geometry have been developed in case of Clifford space.
Cite this paper: Kahil, M. (2020) Motion in Clifford Space. Journal of Modern Physics, 11, 1856-1873. doi: 10.4236/jmp.2020.1111116.
References

[1]   Mathisson, M. (1937) Acta Physica Polonica, 6, 163-209. (In German)

[2]   Papapetrou, A. (1951) Proceedings of the Royal Society of London. Series A, 209, 248.
https://doi.org/10.1098/rspa.1951.0200

[3]   Dixon, W.G. (1970) Proceedings of the Royal Society of London.Series A, 314, 499.
https://doi.org/10.1098/rspa.1970.0020

[4]   Kahil, M.E. (2006) Journal of Mathematical Physics, 47, Article ID: 052501.
https://doi.org/10.1063/1.2196749

[5]   Pavsic, M. and Kahil, M.E. (2012) Open Physics, 10, 414.

[6]   Kahil, M.E. (2018) Gravitation and Cosmology, 24, 83.

[7]   Kahil, M.E. (2018) ADAP, 3, 136.

[8]   Kahil, M.E. (2020) Gravitation and Cosmology, 26, 241-248.
https://doi.org/10.1134/S0202289320030093

[9]   Kahil, M.E. (2020) Indian Journal of Physics.
https://doi.org/10.1007/s12648-020-01793-5

[10]   Kahil, M.E. (2015) Odessa Astronomical Publications, 28, 126.
https://doi.org/10.18524/1810-4215.2015.28.70600

[11]   Pezzaglia, W. (1997) Physical Applications of a Generalized Clifford Calculus (Papapetrou Equations and Metamorphic Curvature). arXiv:gr-qc/9710027

[12]   Pezzaglia, W. (1999) Dimensionally Democratic Calculus and Principles of Polydimensional Physics. arXiv:gr-qc/99120251.

[13]   Mikhail, F.I. and Wanas, M.I. (1977) Proceedings of the Royal Society of London. Series A, 356, 471.

[14]   Wanas, M.I. (2000) Studii Si Cercetari Stiinti_ce. Seria Matematica, No. 10, 297-309.

[15]   Hayashi, K. and Shirifuji, T. (1979) Physical Review D, 19, 3524.
https://doi.org/10.1103/PhysRevD.19.3524

[16]   Hehl, F.W., von der Heyde, P., Kerlik, G.D. and Nester, J.M. (1976) Reviews of Modern Physics, 48, Article ID: 393416.

[17]   Hehl, F.W. (1980) Four Lectures on Poincare Gauge Field Theory. In: Bergmann, P.G. and De Sabbata, V., Eds., Cosmology and Gravitation. NATO Advanced Study Institutes Series (Series B. Physics), Vol. 58, Springer, Boston, MA, 5-61.
https://doi.org/10.1007/978-1-4613-3123-0 2

[18]   Castro, C. and Pav_si_c, M. (2005) Progress in Physics, 1, 32.

[19]   Castro, C. (2012) Advances in Applied Clifford Algebras, 23, 39-62.
https://doi.org/10.1007/s00006-012-0370-4

[20]   Castro, C. (2006) Annals of Physics, 321, 813-839.
https://doi.org/10.1016/j.aop.2005.11.008

[21]   Castro, C. and Pav_si_c, M. (2002) Physics Letters B, 539, 133-142.
https://doi.org/10.1016/S0370-2693(02)02068-3

[22]   Castro, C. (2017) Advances in Applied Cli_ord Algebras, 27, 2393-2405.
https://doi.org/10.1007/s00006-017-0763-5

[23]   Pavsic, M. (2005) Physics Letters B, 614, 85-95.
https://doi.org/10.1016/j.physletb.2005.03.052

[24]   Pavsic, M. (2007) Journal of Physics: Conference Series, 66, Article ID: 012022.
https://doi.org/10.1088/1742-6596/66/1/012022

[25]   Hammond, R. (2002) Reports on Progress in Physics, 65, 599.
https://doi.org/10.1088/0034-4885/65/5/201

[26]   Collins, P.D., Martin, A.D. and Squires, E.J. (1989) Particle Physics and Cosmology. John Wily and Sons Inc., Hoboken.

[27]   Bazanski, S.L. (1989) Journal of Mathematical Physics, 30, 1018.
https://doi.org/10.1063/1.528370

[28]   Wanas, M.I., Melek, M. and Kahil, M.E. (1995) Astrophysics and Space Science, 228, 273-276.
https://doi.org/10.1007/BF00984980

[29]   Wanas, M.I., Melek, M. and Kahil, M.E. (2000) Gravitation and Cosmology, 6, 319.

[30]   Kahil, M.E. (2017) Gravitation and Cosmology, 23, 70-79.
https://doi.org/10.1134/S0202289317010066

[31]   Kahil, M.E. (2007) AIP Conference Proceedings, 957, 329-332.

[32]   Bini, D. and Geralico, A. (2011) Physical Review D, 84, Article ID: 104012.
https://doi.org/10.1103/PhysRevD.84.104012

[33]   Heydrai-Fard, M., Mohseni, M. and Sepanigi, H.R. (2005) Physics Letters B, 626, 230-234.
https://doi.org/10.1016/j.physletb.2005.08.098

[34]   Mohseni, M. (2010) General Relativity and Gravitation, 42, 2477-2490.
https://doi.org/10.1007/s10714-010-0995-3

 
 
Top