AS  Vol.11 No.11 , November 2020
Land Suitability of the Different Cultivars in the South Tyrol Wine Region (Italy)
Abstract: The geology and geomorphology of the territory as well as microclimate are local geographical features that serve as natural ecological resources. These factors influence the biosynthetic activities of plants and their phenology, promoting biodiversity and the qualitative predispositions of grapes and wine. South Tyrol is one of the smallest wine-growing regions in Italy, but owing to its position amid the Alps, it is also one of the most multifaceted, a region of wide geographical diversity and remarkable ecological range, hosting a concentration of many different vine varieties and high quality wines. This applied territorial research investigates the particular environmental circumstances that favour this case. A data set describing approximately 26,000 vineyards and 5450 hectares has been employed to evaluate 18 subzones of wines and vines selected from 86 new geographical units defined within the DOC wine region. A new environmental mapping scheme called VHTG is proposed, based on the ecological indicators of grape variety, altitude, topoclimate and the geopedology of the vineyards. Using the VHTG method analyses, the comparisons between the territories of origin and their vine varieties can be rendered simpler and more direct, and it can distinguish the most suitable ecological conditions of wine production zones. It is now possible to examine more in detail the land suitability of the different cultivars, defined by the use of the ecological indicators summarized in the VHTG method. White grape varieties such as Sylvaner and Veltliner prefer high altitudes between 600 m and 900 m, a very high solar radiation SRI index from 80 to 95, and acidic sandy soils of silicate minerals. The most complete and intense tannic structure of regional Pinot Noir correlates to quite clayey soils with dolomite mineral, slightly alkaline, on vineyards at altitudes between 350 m and 410 m, with rather low SRI index from 60 to 75. Similar geopedological conditions favour Gewürztraminer, which, however, requests SRI from 75 to 85. Merlot and Cabernet vines are best expressed in the hottest regional sub-zones, on moderately clayey subalkaline soils at 250 - 350 m of altitudes and SRI around 80. The indigenous red grape variety Lagrein is mostly localized on alluvial cone at altitudes under 350 m, on soft and ventilated acid sands with volcanic silicate minerals.
Cite this paper: Ferretti, C. (2020) Land Suitability of the Different Cultivars in the South Tyrol Wine Region (Italy). Agricultural Sciences, 11, 983-1006. doi: 10.4236/as.2020.1111064.

[1]   Vaudour, E. (2002) The Quality of Grapes and Wine in Relation to Geography: Notions of Terroir at Various Scales. Journal of Wine Research, 13, 117-141.

[2]   Moran, W. (2006) You Said Terroir? Approaches, Science and Explanations. The Terroir 2006 Conference, Davis, 19-23 March 2006.

[3]   Van Leeuwen, C. and Seguin, G. (2006) The Concept of Terroir in Viticulture. Journal of Wine Research, 17, 1-10.

[4]   Martin, A. (2013) Terroir—Towards a New Perspective. South Australian Geographical Journal, 112, 5-22.

[5]   Patterson, T. and Buechsenstein, J. (2018) Wine and Place: A Terroir Reader. University of California Press, Berkeley, 329.

[6]   Costantini, E.A.C. and Buccelli, P. (2008) Suolo, vite ed altre colture di qualità: L’introduzione e la pratica dei concetti di “terroir” e “zonazione”. Italian Journal of Agronomy, 3, 23-33.

[7]   Van Leeuwen, C., Friant, P., Choné, X., Tregoat, O., Kounduras, S. and Debourdieu, D. (2004) Influence of Climate, Soil, and Cultivar on Terroir. American Journal of Enology and Viticulture, 55, 207-217.

[8]   Van Leeuwen, C., Roby, J.-P., Pernet, D. and Bois, B. (2010) Methodology of Soil-Based Zoning for Viticultural Terroirs. Bulletin de l’O.I.V., 83, 13-29.

[9]   Vavoulidou, E., Avramides, E.J., Dimirkou, A. and Papadopoulos, P. (2006) Influence of Different Cultivation Practices on the Properties of Volcanic Soils on Santorini Island, Greece. Communications in Soil Science and Plant Analysis, 37, 2857-2866.

[10]   Costantini, E.A.C., Lulli, L. and Mirabella, A. (1991) First Experiences to Individuate Soils Suitable for the Production of High Quality Vernaccia of San Gimignano. Atti simposio internazionale: La gestione del territorio viticolo sulla base delle zone pedoclimatiche e del catasto, S. Maria della Versa (PV), 29-30 Giugno 1987, 125-135.

[11]   Costantini, E.A.C. (1998) Le analisi fisiche nella definizione della qualità dei suoli per la valutazione del territorio. I Georgofili. Quaderni 1998 III. La normalizzazione dei metodi di analisi fisica del suolo. Firenze, 33-57.

[12]   Stimpfl, E. and Alii (2006) Zustandserhebung der Südtiroler Böden im Grunland. Laimburg Journal, 3, 2-73.

[13]   Costantini, A.E.C. (2015) La componente pedological del terroir. Italus Hortus, 22, 15-30.

[14]   Ferretti, C.G. (2019) Relationship between Geology, Soil Assessment, and Terroir of Gewürtztraminer Vineyards: A Case Study in Dolomites of Northern Italy. Catena, 179, 74-84.

[15]   Miller, B.A. and Lee Burras, C. (2015) Comparison of Surficial Geology Maps Based on Soil Survey and in Depth Geological Survey. Soil Horizons, 56, 1-12.

[16]   Heung, B., Bulmer, C.E. and Schmidt, M.G. (2014) Predictive Soil Parent Material Mapping at a Regional-Scale: A Random Forest Approach. Geoderma, 214-215, 141-154.

[17]   Brevik, E.C. and Miller, B.A. (2015) The Use of Soil Surveys to Aid in Geologic Mapping with an Emphasis on the Eastern and Midwestern United States. Soil Horizons, 56, 1-9.

[18]   Maltman, A. (2008) The Role of Vineyard Geology in Wine Typicity. Journal of Wine Research, 19, 1-17.

[19]   Maltman, A. (2018) Vineyards, Rocks, and Soils: The Wine Lover’s Guide to Geology. Oxford University Press Sheridan Books Inc., Oxford, 237 p.

[20]   Wilson, J.E. (1999) Terroir. The Role of Geology, Climate, and Culture in the Making of French Wines. University of California Press, Berkeley, Los Angeles, London, 326.

[21]   Jackson, R.S. (2014) Wine Science: Principles and Applications. Elsevier Academic Press, Amsterdam, 996 p.

[22]   Ferretti, C.G. (2020) A New Geographical Classification for Vineyards Tested in the South Tyrol Wine Region, Northern Italy, on Pinot Noir and Sauvignon Blanc Wines. Ecological Indicators, 108, Article ID: 105737.

[23]   Brady, N.C. and Weil, R.R. (2016) The Nature and Properties of Soils. Pearson, London.

[24]   Carey, V.A., Archer, E., Barbeau, G. and Saayman, D. (2008) Viticultural Terroirs in Stellenbosch, South Africa. II. The Interaction of Cabernet-Sauvignon and Sauvignon Blanc with Environment. Journal International des Sciences de la Vigne et du Vin, 42, 185-201.

[25]   Pedri, U. (2013) Verschiedene-Lage Andere Weine. Südtiroler Landwirt Nr.

[26]   Pedri, U. (2014) Auswirkungen Unterschiedlicher Standorte auf Trauben und Weinqualität der Sorte Gewürztraminer. Mitteilungen Klosterneuburg, 64, 156-170.

[27]   Pedri, U. and Pertoll, G. (2012) Die Auswirkung unterschiedlicher Standorte auf die Trauben und Weinqualität bei der Sorte Sauvignon Blanc. Mitteilungen Klosterneuburg, 62, 123-142.

[28]   Pertoll, G., Pedri, U., et al. (2012) Lagrein: Influenza del sito di coltivazione, del terreno e delle modalità di coltivazione sulla qualità dell’uva e del vino. Frutta e vite 02/2012.

[29]   Pedri, U. and Pertoll, G. (2012) Der Einfluss des Standortes auf die sensorischen Eigenschaften der Weine verschiedener Rebsorten. Obst und Weinbau. 04/2013.

[30]   EURAC Research (2018) Climate Change and Consequences for South Tyrol.

[31]   Konsortium Südtirol Wein (2019) Kellereien von A bis Z.

[32]   Fischer, M., Rudmann-Mauer, K., Weyland, A. and Stöcklin, J. (2008) Agricultural Land Use and Biodiversity in the Alps. Mountain Research and Development, 28, 148-155.

[33]   Sitzia, T. and Trentanovi, G. (2011) Maggengo Meadow Patches Enclosed by Forests in the Italian Alps: Evidence of Landscape Legacy on Plant Diversity. Biodiversity and Conservation, 20, 945.

[34]   ISPRA (2012) Carta geologica d’Italia scala 1:50.000.

[35]   ISPRA (2012) Carta Geologica d’Itlalia alla scala 1:100.000 con “Note illustrative”.

[36]   Gruber, F.E., Baruck, J., Mair, V. and Geitner, C. (2019) From Geological to Soil Parent Material Maps—A Random Forest-Supported Analysis of Geological Map Units and Topography to Support Soil Survey in South Tyrol. Geoderma, 354, Article ID: 113884.

[37]   Provincia Autonoma di Bolzano (2020) Geological Maps on Scale 1:50.000 (CARG) and Scale 1:100.000 (Servizio Geologico Nazionale).

[38]   Brandner, A. (1980) Tirolatlas: Geologische und Tektonische übersichtskarte von Tirol. Universitätsverlag Wagner, Innsbruck.

[39]   Provincia Autonoma di Bolzano (2017) Relazione Agraria & Forestale 2017. Athesia Druck S.r.l., Druckerei, 198.

[40]   Chorti, E., Guidoni, S., Ferrandino, A. and Novello, V. (2010) Effect of Different Cluster Sunlight Exposure Levels on Ripening and Anthocyanin Accumulation in Nebbiolo Grapes. American Journal of Enology and Viticulture, 61, 23-30.

[41]   Weaver, R.J. and McCune, S.B. (1960) Influence of Light on Color Development in Vitis Vinifera Grapes. American Journal of Enology and Viticulture, 11, 179-184.

[42]   Ferretti, C.G. (2019) UGA Unità geografiche aggiuntive Alto Adige Südtirol. Analisi e descrizione delle zone ristrette. Consorzio vini Alto Adige. 279 p.

[43]   Conde, C., Silva, P., Fontes, N., Dias, A.C.P., Tavares, R. M., Sousa, J.M., Agasse, A., Delrot, S. and Gerós, H. (2007) Biochemical Changes throughout Grape Berry Development and Fruit and Wine Quality. Global Science Book.

[44]   Dohrmann, R. and Kaufhold, S. (2009) Three New, Quick CEC Methods for Determining the Amounts of Exchangeable Calcium Cations in Calcareous Clays. Clays and Clay Minerals, 57, 338-352.

[45]   Waskom, M., et al. (2020) Seaborn 0.10.1: Statistical Data Visualization.

[46]   Crippen, D.D. and Morrison, J.C. (1986) The Effects of Sun Exposure on the Compositional Development of Cabernet Sauvignon Berries. American Journal of Enology and Viticulture, 38, 235-242.

[47]   Bergqvist, J., Dokoozlian, N. and Ebisuda, N. (2001) Sunlight Exposure and Temperature Effects on Berry Growth and Composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California. American Journal of Enology and Viticulture, 52, 1-7.

[48]   Smart, R.E., Smith, S.M. and Winchester, R.V. (1988) Light Quality and Quantity Effects on Fruit Ripening for Cabernet Sauvignon. American Journal of Enology and Viticulture, 39, 250-258.

[49]   Silacci, M.W. and Morrisopn, J.C. (1990) Changes in Pectin Content of Cabernet Sauvignon Grapes Barries during Maturation. American Journal of Enology and Viticulture, 41, 111-115.

[50]   Bora, F.D., Donici, A., Oşlobanu, A., Fitiu, A., Babes, A.C. and Bunea, C.I. (2016) Qualitative Assessment of the White Wine Varieties Grown in Dealu Bujorului Vineyard, Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 4, 593-602.

[51]   Dipoli, P. and Bampi, F. (2019) Der Sauvignon Blanc in Südtirol. Retina. Bolzano. 94.

[52]   Zilioli, D.M. and Bini, C. (2009) Dieci anni di ricerche pedologiche in ambiente alpino: Considerazioni sulla distribuzione e sull’evoluzione dei suoli nella regione dolomitica. Studi Trentini di Scienze Naturali, 85, 61-68.

[53]   Stimpfl, E. and Alii (2006) Zustandserhebung der Südtiroler Böden im Obstbau. Laimburg Journal, 3, 74-134.

[54]   Thalheimer, M. (2006) Kartierung der landwirtschaftlich genutzten Böden des überetsch in Südtirol (Italien). Laimburg Journal, 3, 135-177.

[55]   Rauzi, G.M. (1963) Indagine chimico-comparativa fra terreni e foraggi dell’Alto Adige e suoi riflessi nel campo agronomico e zootecnico. Accademia Roveretana. Serie IV Volume III, B, 39-64.

[56]   Reto, D.J., Geitner, C., Gruban, W. and Tusch, M. (2006) Soil Evaluation in Spatial Planning, a Contribution to Sustainable Spatial Development. Results of the EU-Interreg IIIB Alpine Space Project. TUSEC-IP. 47 p.

[57]   Angelucci, G., Dessì, G. and Stefani, M. (2006) Interner Endbericht zu Arbeitspaket 4 “Öffentlichkeitsarbeit” für das Projekt TUSEC-IP im Rahmen der EU-Gemeinschaftsinitiative Interreg III B Alpenraum. (Koordination Arbeitspaket 4: Autonome Provinz Bozen-Südtirol, Landesagentur für Umwelt)-Bozen. 19 p.