MSA  Vol.11 No.11 , November 2020
Polycaprolactone (PCL) Chains Grafting on the Surface of Cellulose Nanocrystals (CNCs) during In Situ Polymerization of ε-Caprolactone at Room Temperature
Abstract: This work aimed at investigating the feasibility of surface modification of cellulose nanocrystals (CNCs) using in situ ring opening polymerization of ε-caprolactone (ε-CL) at room temperature. Residues of flax and milkweed (Asclepias syriaca) stem fibers were used as a source of cellulose to obtain and isolate CNCs. The cationic ring opening polymerization (CROP) of the monomer ε-CL was used to covalently graft polycaprolactone (PCL) chains at the CNCs surface. Silver hexafluoroantimonate (AgSbF6) was used in combination with the extracted CNCs to initiate, at room temperature, the polymerization and the grafting reactions with no other stimulus. Fourier-Transform InfraRed (FTIR), X-ray Photoelectron Spectrometry (XPS), UV/visible absorption and Gel Permeation Chromatography (GPC) analyses evidenced the presence of PCL chains covalently grafted at CNCs surface, the formation of Ag(0) particles as well as low or moderate molecular weight free PCL chains.
Cite this paper: Astruc, J. , Cousin, P. , Laroche, G. , Robert, M. , Elkoun, S. (2020) Polycaprolactone (PCL) Chains Grafting on the Surface of Cellulose Nanocrystals (CNCs) during In Situ Polymerization of ε-Caprolactone at Room Temperature. Materials Sciences and Applications, 11, 744-756. doi: 10.4236/msa.2020.1111050.

[1]   Habibi, Y., Lucia, L.A. and Rojas, O.J. (2010) Cellulose Nanocrystals: Chemistry, Self Assembly, and Applications. Chemical Reviews, 110, 3479-3500.

[2]   Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J. and Nassiopoulos, E. (2011) Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, Article ID: 837875.

[3]   Thakur, V.K. and Singha, A.S. (2010) KPS-Initiated Graft Copolymerization onto Modified Cellulosic Biofibers. International Journal of Polymer Analysis and Characterization, 15, 471-485.

[4]   Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. (2011) Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews, 40, 3941.

[5]   Peng, B.L., Dhar, N., Liu, H.L. and Tam, K.C. (2011) Chemistry and Applications of Nanocrystalline Cellulose and Its Derivatives: A Nanotechnology Perspective. The Canadian Journal of Chemical Engineering, 89, 1191-1206.

[6]   Habibi, Y. and Dufresne, A. (2008) Highly Filled Bionanocomposites from Functionalized Polysaccharide Nanocrystals. Biomacromolecules, 9, 1974-1980.

[7]   Goffin, A.-L., Raquez, J.-M., Duquesne, E., Siqueira, G., Habibi, Y., Dufresne, A. and Dubois, P. (2011) From Interfacial Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker-Filled Polylactide-Based Nanocomposites. Biomacromolecules, 12, 2456-2465.

[8]   Habibi, Y., Goffin, A.-L., Schiltz, N., Duquesne, E., Dubois, P. and Dufresne, A. (2008) Bionanocomposites Based on Poly(ε-caprolactone)-Grafted Cellulose Nanocrystals by Ring-Opening Polymerization. Journal of Materials Chemistry, 18, 5002.

[9]   Diaz, C.A., Pao, H.Y. and Kim, S. (2016) Film Performance of Poly(lactic acid) Blends for Packaging Applications. Journal of Applied Packaging Research, 8, 4.

[10]   Sisson, A.L., Ekinci, D. and Lendlein, A. (2013) The Contemporary Role of ε-Caprolactone Chemistry to Create Advanced Polymer Architectures. Polymer, 54, 4333-4350.

[11]   Ulery, B.D., Nair, L.S. and Laurencin, C.T. (2011) Biomedical Applications of Biodegradable Polymers. Journal of Polymer Science Part B: Polymer Physics, 49, 832-864.

[12]   Kunioka, M., Wang, Y. and Onozawa, S. (2003) Polymerization of Poly(ε-caprolactone) Using Yttrium Triflate. Polymer Journal, 35, 422.

[13]   Carlmark, A., Larsson, E. and Malmstrom, E. (2012) Grafting of Cellulose by Ring-Opening Polymerisation—A Review. European Polymer Journal, 48, 1646-1659.

[14]   Labet, M. and Thielemans, W. (2011) Improving the Reproducibility of Chemical Reactions on the Surface of Cellulose Nanocrystals: ROP of ε-Caprolactone as a Case Study. Cellulose, 18, 607-617.

[15]   Lin, N., Chen, G., Huang, J., Dufresne, A. and Chang, P.R. (2009) Effects of Polymer-Grafted Natural Nanocrystals on the Structure and Mechanical Properties of Poly(lactic acid): A Case of Cellulose Whisker-Graft-Polycaprolactone. Journal of Applied Polymer Science, 113, 3417-3425.

[16]   Lizundia, E., Fortunati, E., Dominici, F., Vilas, J.L., León, L.M., Armentano, I. and Kenny, J.M. (2016) PLLA-Grafted Cellulose Nanocrystals: Role of the CNC Content and Grafting on the PLA Bionanocomposite Film Properties. Carbohydrate Polymers, 142, 105-113.

[17]   Lonnberg, H., Zhou, Q., Brumer, H., Teeri, T.T., Malmstrom, E. and Hult, A. (2006) Grafting of Cellulose Fibers with Poly(ε-caprolactone) and Poly(lactic acid) via Ring-Opening Polymerization. Biomacromolecules, 7, 2178-2185.

[18]   Miao, C. and Hamad, W.Y. (2016) In-Situ Polymerized Cellulose Nanocrystals (CNC) Poly(l-lactide) (PLLA) Nanomaterials and Applications in Nanocomposite Processing. Carbohydrate Polymers, 153, 549-558.

[19]   Peltzer, M., Pei, A., Zhou, Q., Berglund, L. and Jiménez, A. (2014) Surface Modification of Cellulose Nanocrystals by Grafting with Poly(lactic acid): Surface Modification of Cellulose Nanocrystals. Polymer International, 63, 1056-1062.

[20]   Peacock, A.J. and Calhoun, A.R. (2006) Polymer Chemistry: Properties and Applications. Hanser Gardner Publications, Munich.

[21]   Tehfe, M.-A., Jamois, R., Cousin, P., Elkoun, S. and Robert, M. (2015) In Situ Synthesis and Characterization of Silver/Polymer Nanocomposites by Thermal Cationic Polymerization Processes at Room Temperature: Initiating Systems Based on Organosilanes and Starch Nanocrystals. Langmuir, 31, 4305-4313.

[22]   Astruc, J., Nagalakshmaiah, M., Laroche, G., Grandbois, M., Elkoun, S. and Robert, M. (2017) Isolation of Cellulose-II Nanospheres from Flax Stems and Their Physical and Morphological Properties. Carbohydrate Polymers, 178, 352-359.

[23]   El-Sheikh, M.A. (2014) A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles. The Scientific World Journal, 2014, Article ID: 514563.

[24]   Crivello, J.V., Dietliker, K. and Bradley, G. (1999) Photoinitiators for Free Radical Cationic & Anionic Photopolymerisation. Wiley, Hoboken.

[25]   Farrell, D.J., McArdle, C., Doherty, M. and Kelly, J.M. (2012) Surface Promoted Redox Cationic Polymerization of Epoxy Monomers Catalyzed by Silver Salts. Journal of Polymer Science Part A: Polymer Chemistry, 50, 2957-2966.

[26]   Yagci, Y. and Reetz, I. (1998) Externally Stimulated Initiator Systems for Cationic Polymerization. Progress in Polymer Science, 23, 1485-1538.

[27]   Ortyl, J. and Popielarz, R. (2012) New Photoinitiators for Cationic Polymerization. Polimery, 57, 510-517.

[28]   Nehlig, E., Schneider, R., Vidal, L., Clavier, G. and Balan, L. (2012) Silver Nanoparticles Coated with Thioxanthone Derivative as Hybrid Photoinitiating Systems for Free Radical Polymerization. Langmuir, 28, 17795-17802.

[29]   Biniak, S., Pakula, M. and Swiatkowski, A. (1999) Influence of Surface Chemical Structure of Active Carbon on Its Electrochemical Behaviour in the Presence of Silver. Journal of Applied Electrochemistry, 29, 481-487.

[30]   Bootharaju, M.S. and Pradeep, T. (2010) Uptake of Toxic Metal Ions from Water by Naked and Monolayer Protected Silver Nanoparticles: An X-Ray Photoelectron Spectroscopic Investigation. The Journal of Physical Chemistry C, 114, 8328-8336.

[31]   Macková, A., Svorcík, V., Sajdl, P., Stryhal, Z., Pavlík, J., Malinsky, P. and Slouf, M. (2007) RBS, XPS, and TEM Study of Metal and Polymer Interface Modified by Plasma Treatment. Vacuum, 82, 307-310.

[32]   Saion, E., Gharibshahi, E. and Naghavi, K. (2013) Size-Controlled and Optical Properties of Monodispersed Silver Nanoparticles Synthesized by the Radiolytic Reduction Method. International Journal of Molecular Sciences, 14, 7880-7896.

[33]   Balavandy, S., Shameli, K., Biak, D.R.B.A. and Abidin, Z. (2014) Stirring Time Effect of Silver Nanoparticles Prepared in Glutathione Mediated by Green Method. Chemistry Central Journal, 8, 11.

[34]   Rauwel, P., Rauwel, E., Ferdov, S. and Singh, M.P. (2015) Silver Nanoparticles: Synthesis, Properties, and Applications. Advances in Materials Science and Engineering, 2015, Article ID: 624394.

[35]   Alqadi, M.K., Abo Noqtah, O.A., Alzoubi, F.Y., Alzouby, J. and Aljarrah, K. (2014) pH Effect on the Aggregation of Silver Nanoparticles Synthesized by Chemical Reduction. Materials Science-Poland, 32, 107-111.

[36]   Tian, C., Fu, S., Chen, J., Meng, Q. and Lucia, L.A. (2014) Graft Polymerization of Epsilon-Caprolactone to Cellulose Nanocrystals and Optimization of Grafting Conditions Utilizing a Response Surface Methodology. Nordic Pulp & Paper Research Journal, 29, 58-68.