CWEEE  Vol.9 No.4 , October 2020
The Growth Factors Involved in Microalgae Cultivation for Biofuel Production: A Review
Abstract: The growing demand for energy and the negative environmental impacts of fossil fuel use are triggering global searches for a renewable and eco-friendly alternative biofuel. Microalgae are considered as one of the most promising feedstocks for biofuel production, due to many advantages including cultivation in non-arable land and being able to grow in wastewater or seawater. That is why; microalgae-based biofuels are regarded as one of the best candidates to replace fossil fuels. There are two main types of microalgae cultivation systems: Open Raceway Ponds and Closed Photobioreactos (PBRs). Due to some limitations in Open Raceways, PBRs have become the most favorable choice for biofuel producers, even though it is costly. To make the process viable, the growth of microalgae for biofuel production should be cost-effective. One way to achieve this goal is to optimize the environmental factors that influence their growth during the cultivation stage to increase the accumulation of bio-compounds of fuel. Algal growth relies mostly on nutrients, CO2 concentration, pH and salinity, light intensity and quality, temperature and finally mixing, which directly affects all other factors. Thus, before designing PBR, a thorough study on these growth parameters is needed. In the present study, we reviewed and evaluated these growth influencing factors in an extensive way to optimize biofuel production.
Cite this paper: Chowdury, K. , Nahar, N. and Deb, U. (2020) The Growth Factors Involved in Microalgae Cultivation for Biofuel Production: A Review. Computational Water, Energy, and Environmental Engineering, 9, 185-215. doi: 10.4236/cweee.2020.94012.

[1]   Harder, R. and von Witsch, H. (1942) Ueber Massenkultur von Diatomeen. Berichte der Deutschen Botanischen Gesellschaft, 60, 14-153.

[2]   Chisti, Y. (2016) Large-Scale Production of Algal Biomass: Raceway Ponds. In: Bux, F. and Chisti, Y., Eds., Algae Biotechnology: Products and Processes, Springer, New York, 21-40.

[3]   Chew, K.W., Yap, J.Y., Show, P.L., Suan, N.H., Juan, J.C., Ling, T.C., et al. (2017) Microalgae Biorefinery: High Value Products Perspectives. Bioresource Technology, 229, 53-62.

[4]   Raslavicius, L., Striūgas, N. and Felneris, M. (2018) New Insights into Algae Factories of the Future. Renewable and Sustainable Energy Reviews, 81, 643-654.

[5]   Jacob-Lopes, E., Zepka, L.Q., Merida, L.G.R., Maroneze, M.M. and Neves, C. (2014) Bioprocesso de conversao de dióxido de carbono de emissoes industriais, bioprodutos, seus usos e fotobiorreator híbrido. BR n. PI2014000333.

[6]   Collotta, M., Champagne, P., Busi, L. and Alberti, M. (2017) Comparative LCA of Flocculation for the Harvesting of Microalgae for Biofuels Production. Procedia CIRP, 61, 756760.

[7]   Chang, J.S., Show, P.L., Ling, T.C., Chen, C.Y., Ho, S.H. and Tan, C.H. (2017) Photo-Bioreactors. In: Larroche, C., Sanroman, M., Du, G. and Pandey, A., Eds., Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls, Elsevier, Atlanta, 313-352.

[8]   Su, Y., Song, K., Zhang, P., Su, Y., Cheng, J. and Chen, X. (2017) Progress of Microalgae Biofuel’s Commercialization. Renewable and Sustainable Energy Reviews, 74, 402-411.

[9]   Lundquist, T.J., Woertz, I.C., Quinn, N.W.T. and Benemann, A. (2010) A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy Biosciences Institute, University of California, Berkeley.

[10]   Sun, A., Davis, R., Starbuck, M., Ben-Amotz, A., Pate, R. and Piencos, P.T. (2011) Comparative Cost Analysis of Algal Oil Production for Biofuels. Energy, 36, 5169-5179.

[11]   Singh, R.N. and Sharma, S. (2012) Development of Suitable Photobioreactor for Algae Production—A Review. Renewable and Sustainable Energy Reviews, 16, 2347-2353.

[12]   Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. and Hankamer, B. (2008) Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Research, 1, 20-43.

[13]   Grobbelaar, J.U. (2000) Physiological and Technological Considerations for Optimizing Mass Algal Cultures. Journal of Applied Phycology, 12, 201-206.

[14]   Kunjapur, A.M. and Eldridge, R.B. (2010) Photobioreactor Design for Commercial Biofuel Production from Microalgae. Industrial and Engineering Chemistry Research, 49, 3516-3526.

[15]   Abomohra, A., Jin, W., Tu, R., Han, S., Eid, M. and Eladel, H. (2016) Microalgal Biomass Production as a Sustainable Feedstock for Biodiesel: Current Status and Perspectives. Renewable and Sustainable Energy Reviews, 64, 596-606.

[16]   Chisti, Y. (2008) Biodiesel from Microalgae Beats Bioethanol. Trends in Biotechnology, 26, 126-131.

[17]   Huang, Q., Jiang, F., Wang, L. and Yang, C. (2017) Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering, 3, 318-329.

[18]   Zhong, J.Y., Rong, J.F. and Zong, B.W. (2013) Factors in Mass Cultivation of Microalgae for Biodiesel. Chinese Journal of Catalysis, 34, 80-100.

[19]   Wang, B., Lan, C.Q. and Horsman, M. (2012) Closed Photobioreactors for Production of Microalgal Biomasses. Biotechnology Advances, 30, 904-912.

[20]   Blanken, W., Cuaresma, M., Wijffels, R.H. and Janssen, M. (2013) Cultivation of Microalgae on Artificial Light Comes at a Cost. Algal Research, 2, 333-340.

[21]   Grima, E.M., Belarbi, E.-H., Fernández, F.A., Medina, A.R. and Chisti, Y. (2003) Recovery of Microalgal Biomass and Metabolites: Process Options and Economics, Biotechnology Advances, 20, 491-515.

[22]   Tredici, M.R. and Zittelli, G.C. (1998) Efficiency of Sunlight Utilization: Tubular versus Flat Photobioreactors. Biotechnology and Bioengineering, 57, 187-197.<187::AID-BIT7>3.0.CO;2-J

[23]   Acien Fernandez, F.G., Fernandez Sevilla, J.M., Sanchez Perez, J.A., Molina Grima, E. and Chisti, Y. (2001) Airlift-Driven External-Loop Tubular Photobioreactors for Outdoor Production of Microalgae: Assessment of Design and Performance. Chemical Engineering Science, 56, 2721-2732.

[24]   Tredici, M.R., Bassi, N., Prussi, M., Biondi, N., Rodolfi, L., Chini Zittelli, G. and Sampietro, G. (2015) Energy Balance of Algal Biomass Production in a 1-ha “Green Wall Panel” Plant: How to Produce Algal Biomass in a Closed Reactor Achieving a High Net Energy Ratio. Applied Energy, 154, 1103-1111.

[25]   da Fontoura, J.T., Rolim, G.S., Farenzena, M. and Gutterres, M. (2017) Influence of Light Intensity and Tannery Wastewater Concentration on Biomass Production and Nutrient Removal by Microalgae Scenedesmus sp. Process Safety and Environmental Protection, 111, 355-362.

[26]   Richmond, A. (2004) Handbook of Microalgal Culture—Biotechnology and Applied Phycology. Blackwell Science, USA.

[27]   Rai, M.P. and Gupta, S. (2017) Effect of Media Composition and Light Supply on Biomass, Lipid Content and Fame Profile for Quality Biofuel Production from Scenedesmus abundans. Energy Conversion and Management, 141, 85-92.

[28]   Chisti, Y. (2007) Biodiesel from Microalgae. Biotechnology Advances, 25, 294-306.

[29]   Vejrazka, C., et al. (2011) Photosynthetic Efficiency of Chlamydomonas reinhardtii in Flashing Light. Biotechnology and Bioengineering, 108, 2905-2913.

[30]   Vejrazka, C., et al. (2012) Photosynthetic Efficiency of Chlamydomonas reinhardtii in Attenuated, Flashing Light. Biotechnology and Bioengineering, 109, 2567-2574.

[31]   Acien Fernandez, F.G., Fernandez Sevilla, J.M. and Molina, G.E. (2013) Photobioreactors for the Production of Microalgae. Reviews in Environmental Science and Bio-Technology, 12, 131-151.

[32]   Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-smith, D.J. and Smith, A.G. (2010) Biodiesel from Algae: Challenges and Prospects. Current Opinion in Biotechnol, 21, 277-286.

[33]   Fernandez-Sevilla, J.M., Molina-Grima, E., Garcia-Camacho, F., Acien, F.G. and Sanchez-Perez, J.A. (1998) Photolimitation and Photoinhibition as Factors Determining Optimal Dilution Rate to Produce Eicosapentaenoic Acid from Cultures of the Microalga Isochrysis galbana. Applied Microbiology and Biotechnology, 50, 199-205.

[34]   Khanam, I. and Deb, U.K. (2016) Calculation of the Average Irradiance and the Microalgae Growth for a Year at CUET, Bangladesh. American Journal of Computational Mathematics, 6, 237-244.

[35]   Molina-Grima, E., Garcia-Camacho, F., Sanchez-Perez, J.A., Fernandez-Sevilla, J.M., Acien, F.G. and Contreras-Gomez, A. (1994) A Mathematical Model of Microalgal Growth in Light-Limited Chemostat Culture. Journal of Chemical Technology & Biotechnology, 61, 167-173.

[36]   Sanchez, J.F., Fernandez-Sevilla, J.M., Acien, F.G., Ceron, M.C., Perez-Parra, J. and Molina-Grima, E. (2008) Biomass and Lutein Productivity of Scenedesmus almeriensis: Influence of Irradiance, Dilution Rate and Temperature. Applied Microbiology and Biotechnology, 79, 719-729.

[37]   Goncalves, A.L., Pires, J.C.M. and Simoes, M. (2016) The Effects of Light and Temperature on Microalgal Growth and Nutrients Removal: An Experimental and Mathematical Approach. RCS Advances, 6, 22896-22907.

[38]   Iasimone, F., Panico, A., de Felice, V., Fantasma, F., Iorizzi, M. and Pirozzi, F. (2018) Effect of Light Intensity and Nutrient Supply on Microalgae Cultivated in Urban Wastewater: Biomass Production, Lipids Accumulation and Settleability Characteristics. Journal of Environmental Management, 223, 1078-1085.

[39]   Schulze, P.S.C., Barreira, L.A., Pereira, H.G.C., Perales, J.A. and Varela, J.C.S. (2014) Light Emitting Diodes (LEDs) Applied to Microalgal Production. Trends in Biotechnology, 32, 422-430.

[40]   Schulze, P.S., Pereira, H.G., Santos, T.F., Schueler, L., Guerra, R., Barreira, L.A., Perales, J.A. and Varela, J.C. (2016) Effect of Light Quality Supplied by Light Emitting Diodes (LEDs) on Growth and Biochemical Profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Research, 16, 387-398.

[41]   Lee, C.G. and Palsson, B. (1995) Light Emitting Diode-Based Algal Photobioreactor with External Gas Exchange. Journal of Fermentation and Bioengineering, 79, 257-263.

[42]   Takache, H., Pruvost, J. and Marec, H. (2015) Investigation of Light/Dark Cycles Effects on the Photosynthetic Growth of Chlamydomonas Reinhardtii in Conditions Representative of Photobioreactor Cultivation. Algal Research, 8, 192-204.

[43]   Schulze, P.S.C. (2014) Effects of Light Quality Supplied by Light Emitting Diodes (LEDs) on Microalgal Production. Master’s Thesis, Universidade do Algarve Faculdade de Ciências e Tecnologia, Algarve, Portugal.

[44]   Satthong, S., Saego, K., Kitrungloadjanaporn, P., et al. (2019) Modeling the Effects of Light Sources on the Growth of Algae. Advances in Difference Equations, 2019, 170.

[45]   Singh, S.P. and Singh, P. (2015) Effect of Temperature and Light on the Growth of Algae Species: A Review. Renewable & Sustainable Energy Reviews, 50, 431-444.

[46]   Esteves, A.F., Soares, O.S.G.P., Vilar, V.J.P., Pires, J.C.M. and Goncalves, A.L. (2020) The Effect of Light Wavelength on CO2 Capture, Biomass Production and Nutrient Uptake by Green Microalgae: A Step Forward on Process Integration and Optimisation. Energies, 13, 333.

[47]   Fu, W., Guemundsson, ó., Paglia, G., Herjólfsson, G., Andrésson, ó.S., Palsson, B.O. and Brynjólfsson, S. (2013) Enhancement of Carotenoid Biosynthesis in the Green Microalga Dunaliella salina with Light-Emitting Diodes and Adaptive Laboratory Evolution. Applied Microbiology and Biotechnology, 97, 2395-2403.

[48]   Metsoviti, M.N., Papapolymerou, G., Karapanagiotidis, I.T. and Katsoulas, N. (2019) Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris. Plants, 9, 31.

[49]   Chia, S.R., Ong, H.C., Chew, K.W., Show, P.L., Phang, S.-M., Ling, T.C., et al. (2018) Sustainable Approaches for Algae Utilisation in Bioenergy Production. Renew Energy, 129, 838-852.

[50]   Chavan, K.J., Chouhan, S., Jain, S., Singh, P., Yadav, M. and Tiwari, A. (2014) Environmental Factors Influencing Algal Biodiesel Production. Environmental Engineering Science, 31, 602-611.

[51]   Pancha, I., Chokshi, K. and Mishra, S. (2015) Enhanced Biofuel Production Potential with Nutritional Stress Amelioration through Optimization of Carbon Source and Light Intensity in Scenedesmus sp. CCNM 1077. Bioresource Technology, 179, 565-572.

[52]   Seo, S.H., Ha, J.S., Yoo, C., Srivastava, A., Ahn, C.Y., Cho, D.H., et al. (2017) Light Intensity as Major Factor to Maximize Biomass and Lipid Productivity of Ettlia sp in CO2-Controlled Photoautotrophic Chemostat. Bioresource Technology, 244, 621-628.

[53]   Cheirsilp, B. and Torpee, S. (2012) Enhanced Growth and Lipid Production of Microalgae under Mixotrophic Culture Condition: Effect of Light Intensity, Glucose Concentration and Fed-Batch Cultivation. Bioresource Technology, 110, 510-516.

[54]   Choudhary, P., Bhattacharya, A., Prajapati, S.K., Kaushik, P. and Malik, A. (2015) Chapter 32-Phycoremediation-Coupled Biomethanation of Microalgal Biomass. In: Kim, S.-K., Ed., Handbook of Marine Microalgae, Academic Press, Boston, 483-499.

[55]   Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., et al. (2008) Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances. Plant Journal, 54, 621-639.

[56]   Zienkiewicz, K., Du, Z.Y., Ma, W., Vollheyde, K. and Benning, C. (2016) Stress-Induced Neutral Lipid Biosynthesis in Microalgae-Molecular, Cellular and Physiological Insights. Biochimica et Biophysica Acta, 1861, 1269-1281.

[57]   Gim, G.H., Ryu, J., Kim, M.J., Kim, P.I. and Kim, S.W. (2016) Effects of Carbon Source and Light Intensity on the Growth and Total Lipid Production of Three Microalgae under Different Culture Conditions. Journal of Industrial Microbiology & Biotechnology, 43, 605-616.

[58]   Kim, S., Moon, M., Kwak, M. and Lee, B. (2018) Statistical Optimization of Light Intensity and CO2 Concentration for Lipid Production Derived from Attached Cultivation of Green Microalga Ettlia sp. Scientific Reports, 8, 1-13.

[59]   Mandotra, S.K., Kumar, P., Suseela, M.R., Nayaka, S. and Ramteke, P.W. (2016) Evaluation of Fatty Acid Profile and Biodiesel Properties of Microalga Scenedesmus abundans under the Influence of Phosphorus, pH and Light Intensities. Bioresource Technology, 201, 222-229.

[60]   Pribyl, P., Cepak, V. and Zachleder, V. (2012) Production of Lipids in 10 Strains of Chlorella and Parachlorella, and Enhanced Lipid Productivity in Chlorella vulgaris. Applied Microbiology and Biotechnology, 94, 549-561.

[61]   Mathimani, T., Uma, L. and Prabaharan, D. (2018) Formulation of Low-Cost Seawater Medium for High Cell Density and High Lipid Content of Chlorella vulgaris BDUG 91771 Using Central Composite Design in Biodiesel Perspective. Journal of Cleaner Production, 198, 575-586.

[62]   Solovchenko, A.E. (2012) Physiological Role of Neutral Lipid Accumulation in Eukaryotic Microalgae under Stresses. Russian Journal of Plant Physiology, 59, 167-176.

[63]   George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., et al. (2014) Effects of Different Media Composition, Light Intensity and Photoperiod on Morphology and Physiology of freshwater Microalgae Ankistrodesmus falcatus—A Potential Strain for Bio-Fuel Production. Bioresource Technology, 171, 367-374.

[64]   Nzayisenga, J.C., Farge, X., Groll, S.L., et al. (2020) Effects of Light Intensity on Growth and Lipid Production in Microalgae Grown in Wastewater. Biotechnology for Biofuels, 13, 4.

[65]   Krzeminska, I., Piasecka, A., Nosalewicz, A., Simionato, D. and Wawrzykowski, J. (2015) Alterations of the Lipid Content and Fatty Acid Profile of Chlorella protothecoides under Different Light Intensities. Bioresource Technology, 196, 72-77.

[66]   Cuhel, R.L., Ortner, P.B. and Lean, D.R.S. (1984) Night Synthesis of Protein by Algae. Limnology and Oceanography, 29, 731-744.

[67]   He, Q., Yang, H., Wu, L. and Hu, C. (2015) Effect of Light Intensity on Physiological Changes, Carbon Allocation and Neutral Lipid Accumulation in Oleaginous Microalgae. Bioresource Technology, 191, 219-228.

[68]   Brindley, C., Fernandez, F.A. and Fernandez-Sevilla, J. (2011) Analysis of Light Regime in Continuous Light Distributions in Photobioreactors. Bioresource Technology, 102, 3138-3148.

[69]   Abu-Ghosh, S., Fixler, D., Dubinsky, Z., Solovchenko, A., Zigman, M., Yehoshua, Y. and Iluz, D. (2015) Flashing Light Enhancement of Photosynthesis and Growth Occurs When Photochemistry and Photoprotection Are Balanced in Dunaliella salina. European Journal of Phycology, 50, 469-480.

[70]   Schulze, P.S., Guerra, R., Pereira, H., Schuler, L.M. and Varela, J.C. (2017) Flashing LEDs for Microalgal Production. Trends in Biotechnology, 35, 1088-1101.

[71]   Schulze, P.C., Brindley, C., Fernandez, J.M., et al. (2019) Flashing Light Does Not Improve Photosynthetic Performance and Growth of Green Microalgae. Bioresource Technology Reports, 9, Article ID 100367.

[72]   Ota, M., Takenaka, M., Sato, Y., Lee, R., Jr, S. and Inomata, H. (2015) Effects of Light Intensity and Temperature on Photoautotrophic Growth of a Green Microalga, Chlorococcum littorale. Biotechnology Reports, 7, 24-29.

[73]   Qiang, H. and Richmond, A. (1996) Productivity and Photosynthetic Efficiency of Spirulina platensis as Affected by Light Intensity, Algal Density and Rate of Mixing in a Flat Plate Photobioreactor. Journal of Applied Phycology, 8, 139-145.

[74]   Xu, Y., Ibrahim, I.M. and Harvey, P.J. (2016) The Influence of Photoperiod and Light Intensity on the Growth and Photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30. Plant Physiology and Biochemistry, 106, 305-315.

[75]   Deb, U.K., Shahriar, M., Bhowmik, J. and Chowdury, M.K.H. (2017) The Effect of Irradiance Related Temperature on Microalgae Growth in a Tubular Photo Bioreactor for Cleaner Energy. American Journal of Computational Mathematics, 7, 371-384.

[76]   Bernard, O. and Remond, B. (2012) Validation of a Simple Model Accounting for Light and Temperature Effect on Microalgal Growth. Bioresource Technology, 123, 520-527.

[77]   Sánchez, J.F., Fernández, J.M., Acien, F.G., Rueda, A., Perez-Parra, J. and Molina, E. (2008) Influence of Culture Conditions on the Productivity and Lutein Content of the New Strain Scenedesmus almeriensis. Process Biochemistry, 43, 398-405.

[78]   Bosma, R., Van Zessen, E., Reith, J.H., Tramper, J. and Wijffels, R.H. (2007) Prediction of Volumetric Productivity of an Outdoor Photobioreactor. Biotechnology and Bioengineering, 97, 1108-1120.

[79]   Huesemann, M.H., Van Wagenen, J., Miller, T., Chavis, A., Hobbs, S. and Crowe, B. (2013) A Screening Model to Predict Microalgae Biomass Growth in Photobioreactors and Raceway Ponds. Biotechnology and Bioengineering, 110, 1583-1594.

[80]   Torzillo, G. (1997) Tubular Bioreactors. In: Vonshak, A., Ed., Spirulina platensis (Arthrospira): Phisiology, cell-biology and biotechnology, Taylor and Francis, London, 101-115.

[81]   Becker, E.W. (1994) Microalgae-Biotechnology and Microbiology. Cambridge University Press, Cambridge.

[82]   Watanabe, Y., de la Noue, J. and Hall, D.O. (2011) Photosynthetic Performance of a Helical Tubular Photobioreactor Incorporating the Cyanobacterium Spirulina platensis. Biotechnology and Bioengineering, 47, 261-269.

[83]   Thompson Jr., G.A. (1996) Lipids and Membrane Function in Green Algae. Biochimica et Biophysica Acta, 1302, 17-45.

[84]   Harwood, J.L. (2004) Involvement of Chloroplast Lipids in the Reaction of Plants Submitted to Stress. In: Siegenthaler, P.A. and Murata, N., Eds., Lipids in Photosynthesis: Structure, Function and Genetics, Springer, Berlin, Germany, 6, 287-302.

[85]   Guschina, I.A. and Harwood, J.L. (2009) Algal Lipids and Effect of the Environment on Their Biochemistry. In: Arts, M.T., Brett, M.T. and Kainz, M., Eds., Lipids in Aquatic Ecosystems, Springer, Berlin, Germany, 1-24.

[86]   Binnal, P. and Babu, P.N. (2017) Statistical Optimization of Parameters Affecting Lipid Productivity of Microalga Chlorella Protothecoides Cultivated in Photobioreactor under Nitrogen Starvation. South African Journal of Chemical Engineering, 23, 26-37.

[87]   Lee, S.J., Go, S., Jeong, G.T. and Kim, S.K. (2011) Oil Production from Five Marine Microalgae for the Production of Biodiesel. Biotechnology and Bioprocess Engineering, 16, 561-566.

[88]   Wei, L., Huang, X. and Huang, Z. (2014) Temperature Effects on Lipid Properties of Microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as Biofuel Resources. Chinese Journal of Oceanology and Limnology, 33, 99-106.

[89]   Renaud, S.M., Thinh, L., Lambrinidis, G. and Parry, D.L. (2002) Effect of Temperature on Growth, Chemical Composition and Fatty Acid Composition of Tropical Australian Microalgae Grown in Batch Cultures. Aquaculture, 211, 195-214.

[90]   Goncalves, A.L., Pires, J.C.M. and Simoes, M. (2017) A Review on the Use of Microalgal Consortia for Wastewater Treatment. Algal Research, 24, 403-415.

[91]   Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E. and Bashan, Y. (2011) Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water Research, 45, 11-36.

[92]   Silva, N.F.P., Goncalves, A.L., Moreira, F.C., Silva, T.F.C.V., Martins, F.G., Alvim-Ferraz, M.C.M., et al. (2015) Towards Sustainable Microalgal Biomass Production by Phycoremediation of a Synthetic Wastewater: A Kinetic Study. Algal Research, 11, 350-358.

[93]   Jia, H., Yuan, Q. and Rein, A. (2016) Removal of Nitrogen from Wastewater Using Microalgae and Microalgae—Bacteria Consortia. Cogent Environmental Science, 2, 1275089.

[94]   Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M. and Chen, Y. (2011) Life-Cycle Analysis on Biodiesel Production from Microalgae: Water Footprint and Nutrients Balance. Bioresource Technology, 102, 159-165.

[95]   Goiris, K., Van Colen, W., Wilches, I., León-Tamariz, F., De Cooman, L. and Muylaert, K. (2015) Impact of Nutrient Stress on Antioxidant Production in Three Species of Microalgae. Algal Research, 7, 51-57.

[96]   Sacristán de Alva, M., Luna Pabello, V.M., Orta Ledesma, M.T. and Cruz Gómez, M.J. (2018) Carbon, Nitrogen, and Phosphorus Removal, and Lipid Production by Three Saline Microalgae Grown in Synthetic Wastewater Irradiated with Different Photon Fluxes. Algal Research, 34, 97-103.

[97]   Markou, G., Vandamme, D. and Muylaert, K. (2014) Microalgal and Cyanobacterial Cultivation: The Supply of Nutrients. Water Research, 65, 186-202.

[98]   Borowitzka, M.A. (1988) Fats, Oils and Carbohydrates. In: Borowitzka, M.A. and Borowitzka, L.J., Eds., Micro-Algal Biotechnology, Cambridge University Press, Cambridge.

[99]   Martin, J.H., Knauer, G.A., Karl, D.M. and Broenkow, W.W. (1987) VERTEX: Carbon Cycling in the Northeast Pacific. Deep Sea Research Part A. Oceanographic Research Papers, 34, 267-285.

[100]   Minster, J.-F. and Boulahdid, M. (1987) Redfield Ratios along Isopycnal Surfaces—A Complementary Study. Deep Sea Research Part A. Oceanographic Research Papers, 34, 1981-2003.

[101]   Shaffer, G., Bendtsen, J. and Ulloa, O. (1999) Fractionation during Remineralization of Organic Matter in the Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 46, 185-204.

[102]   Takahashi, T., Broecker, W.S. and Langer, S. (1985) Redfield Ratio Based on Chemical Data from Isopycnal Surfaces. Journal of Geophysical Research: Oceans, 90, 6907-6924.

[103]   Matouke, M.M., Elewa, D.T. and Abdullahi, K. (2018) Binary Effect of Titanium Dioxide Nanoparticles (nTio2) and Phosphorus on Microalgae (Chlorella Ellipsoides Gerneck, 1907). Aquatic Toxicology, 198, 40-48.

[104]   Powell, N., Shilton, A., Chisti, Y. and Pratt, S. (2009) Towards a Luxury Uptake Process via Microalgae-Defining the Polyphosphate Dynamics. Water Research, 43, 4207-4213.

[105]   Richmond A. (2004) Handbook of Microalgal Culture—Biotechnology and Applied Phycologly. Chapter-5: Hu Q. Environmental Effects on Cell Composition. Blackwell Science, Oxford.

[106]   Markou, G. and Georgakakis, D. (2011) Cultivation of Filamentous Cyanobacteria (Blue-Green Algae) in Agro-Industrial Wastes and Wastewaters: A Review. Applied Energy, 88, 3389-3401.

[107]   Hadiyanto, S., Rostika, R.N. and Handayani, N.A. (2012) Biofixation of Carbon Dioxide by Chlamydomonas sp. in a Tubular Photobioreactor. International Journal of Renewable Energy Development, 1, 10-14.

[108]   Cho, S., Luong, T.T., Lee, D., Oh, Y.K. and Lee, T. (2011) Reuse of Effluent Water from a Municipal Wastewater Treatment Plant in Microalgae Cultivation for Biofuel Production. Bioresource Technology, 102, 8639-8645.

[109]   Park, J.B.K., Craggs, R.J. and Shilton, A.N. (2011) Wastewater Treatment High Rate Algal Ponds for Biofuel Production. Bioresource Technology, 102, 35-42.

[110]   Durán, I., Rubiera, F. and Pevida, C. (2018) Microalgae: Potential Precursors of CO2 Adsorbents. Journal of CO2 Utilization, 26, 454-464.

[111]   Ge, Y., Liu, J. and Tian, G. (2011) Growth Characteristics of Botryococcus braunii 765 under High CO2 Concentration in Photobioreactor. Bioresource Technology, 102, 130-134.

[112]   Pires, J.C.M., Alvim-Ferraz, M.C.M., Martins, F.G. and Simoes, M. (2012) Carbon Dioxide Capture from Flue Gases Using Microalgae: Engineering Aspects and Biorefinery Concept. Renewable and Sustainable Energy Reviews, 16, 3043-3053.

[113]   Anjos, M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A. and Dragone, G. (2013) Optimization of CO2 Bio-Mitigation by Chlorella vulgaris. Bioresource Technology, 139, 149-154.

[114]   Kasiri, S., Abdulsalam, S., Ulrich, A. and Prasad, V. (2015) Optimization of CO2 Fixation by Chlorella kessleri Using Response Surface Methodology. Chemical Engineering Science, 127, 31-39.

[115]   Qiu, R., Gao, S., Lopez, P.A. and Ogden, K.L. (2017) Effects of pH on Cell Growth, Lipid Production and CO2 Addition of Microalgae Chlorella sorokiniana. Algal Research, 28, 192-199.

[116]   Singh, N.K. and Dhar, D.W. (2011) Microalgae as Second Generation Biofuel: A Review. Agronomy for Sustainable Development, 31, 605-629.

[117]   Zhu, L. (2015) Microalgal Culture Strategies for Biofuel Production: A Review. Biofuels, Bioproducts and Biorefining, 9, 801-814.

[118]   Lu, D., Tabil, L.G., Wang, D., Wang, G. and Emami, S. (2014) Experimental Trials to Make Wheat Straw Pellets with Wood Residue and Binders. Biomass Bioenergy, 69, 287-296.

[119]   Wood, J.M. and Wang, H.-K. (1983) Microbial Resistance to Heavy Metals. Environmental Science & Technology, 17, 582A-590A.

[120]   Lower, S.K. (1999) Carbonate Equilibria in Natural Waters.

[121]   Gustin, S. and Marinsek-Logar, R. (2011) Effect of pH, Temperature and Air Flow Rate on the Continuous Ammonia Stripping of the Anaerobic Digestion Effluent. Process Safety and Environmental Protection, 89, 61-66.

[122]   Cai, T., Park, S.Y. and Li, Y.B. (2013) Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renewable and Sustainable Energy Reviews, 19, 360-369.

[123]   Wang, L. and Nancollas, G.H. (2008) Calcium Orthophosphates: Crystallization and Dissolution. Chemical Reviews, 108, 4628-4669.

[124]   Chiranjeevi, P. and Mohan, S.V. (2016) Critical Parametric Influence on Microalgae Cultivation towards Maximizing Biomass Growth with Simultaneous Lipid Productivity. Renewable Energy, 98, 64-71.

[125]   Tripathi, R., Singh, J. and Thakur, I.S. (2015) Characterization of Microalga Scenedesmus sp. ISTGA1 for Potential CO2 Sequestration and Biodiesel Production. Renewable Energy, 74, 774-781.

[126]   Munir, N., Imtiaz, A., Sharif, N. and Naz, S. (2015) Optimization of Growth Conditions of Different Algal Strains and Determination of Their Lipid Contents. The Journal of Animal & Plant Sciences, 25, 546-553.

[127]   Wu, Y.H., Yu, Y., Hu, H.Y. and Zhuang, L.L. (2016) Effects of Cultivation Conditions on the Production of Soluble Algal Products (SAPs) of Scenedesmus sp. LX1. Algal Research, 16, 376-382.

[128]   Valdés, F.J., Hernández, M.R., Catalá, L. and Marcilla, A. (2012) Estimation of CO2 Stripping/CO2 Microalgae Consumption Ratios in a Bubble Column Photobioreactor Using the Analysis of the pH Profiles. Application to Nannochloropsis oculata Microalgae Culture. Bioresource Technology, 119, 1-6.

[129]   Moheimani, N.R. (2013) Inorganic Carbon and pH Effect on Growth and Lipid Productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) Grown Outdoors in Bag Photobioreactors. Journal of Applied Phycology, 25, 387-398.

[130]   Venkata Mohan, S. and Devi, M.P. (2014) Salinity Stress Induced Lipid Synthesis to Harness Biodiesel during Dual Mode Cultivation of Mixotrophic Microalgae. Bioresource Technology, 165, 288-294.

[131]   Brindley, C., Garcia-Malea, M.C., Acien, F.G., Fernandez, J.M., Garcia, J.L. and Molina, E. (2004) Influence of Power Supply in the Feasibility of Phaeodactylum Tricornutum Cultures. Biotechnology and Bioengineering, 87, 723-733.

[132]   Suh, I.S. and Lee, C.G. (2003) Photobioreactor Engineering: Design and Performance. Biotechnology and Bioprocess Engineering, 8, 313-321.

[133]   Barbosa, M.J., Hadiyanto, H. and Wijffels, R.H. (2004) Overcoming Shear Stress of Microalgae Cultures in Sparged Photobioreactors. Biotechnology and Bioengineering, 85, 78-85.

[134]   Merchuk, J.C. and Wu, X. (2003) Modeling of Photobioreators: Application to Bubble Column Simulation. Journal of Applied Phycology, 15, 163-169.

[135]   Deb, U.K., Chayantrakom, K. and Lenbury, Y. (2012) Comparison of Single-Phase and Two-Phase Flow Dynamics in the HLTP for Microalgae Culture. International Journal of Mathematics and Computers in Simulation, 6, 496-503.

[136]   Deb, U.K., Chayantrakom, K., Lenbury, Y. and Wiwatanapataphee, B. (2012) Numerical Simulation of Two-Phase Laminar Flow for CO2 and Microalgae Suspension in the HLTP. Proceedings of 11th WSEAS International Conference on System Science and Computer Intelligence, Singapore, 11-13 May 2012, 53-58.

[137]   Sánchez, A., Maceiras, R., Cancela, A. and Pérez, A. (2013) Culture Aspects of Isochrysis galbana for Biodiesel Production. Applied Energy, 101, 192-197.

[138]   Sobczuk, T.M., Camacho, F.G., Grima, E.M. and Chisti, Y. (2005) Effects of Agitation on the Microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess and Biosystems Engineering, 28, 243-250.