Back
 ENG  Vol.12 No.10 , October 2020
Effect of Initial Microstructure on Phase Precipitation and Mechanical Properties during Heat Treatment of TC21 Titanium Alloy
Abstract: Phase precipitation and mechanical properties of TC21 titanium alloy with two different initial microstructures during heat treatment were determined. Result indicated that compared with coarse microstructure alloy, fine microstructure alloy developed finer microstructure, more unstable ω and α2 precipitates with much smaller size and lower volume fraction, and obtained better mechanical properties during heat treatment.
Cite this paper: Wang, L. , Song, X. , Zhang, Y. and Zhou, L. (2020) Effect of Initial Microstructure on Phase Precipitation and Mechanical Properties during Heat Treatment of TC21 Titanium Alloy. Engineering, 12, 781-789. doi: 10.4236/eng.2020.1210055.
References

[1]   Wang, L.R., Ma, C.L., Zhao, Y.Q. and Zhou, L. (2016) Effect of β Heat Treatment on Phase Transformations of TC21 during Rolling. Materials Science and Technology, 32, 635-640.
https://doi.org/10.1179/1743284715Y.0000000055

[2]   Wang, Y.S., Xiu, S.C., Zhang, S.N. and Jiang, C.Y. (2020) Effect of Grinding Parameters on Microstructure Evolution of TC21 Titanium Alloy with Bimodal Starting Microstructure. Journal of Alloys and Compounds, 831, 1-10.
https://doi.org/10.1016/j.jallcom.2020.154882

[3]   Shi, Z.F., Guo, H.Z., Han, J.Y. and Yao, Z.K. (2014) Microstructure and Mechanical Properties of TC21 Titanium Alloy after Heat Treatment. Transactions of Nonferrous Metals Society of China, 23, 2882-2889.
https://doi.org/10.1016/S1003-6326(13)62810-1

[4]   Elshaer, R.N. and Ibrahim, K.M. (2020) Effect of Cold Deformation and Heat Treatment on Microstructure and Mechanical Properties of TC21 Ti Alloy. Transactions of Nonferrous Metals Society of China, 30, 1290-1299.
https://doi.org/10.1016/S1003-6326(20)65296-7

[5]   Zherebtsov, S., Mazur, A., Salishchev, G. and Lojkowski, W. (2008) Effect of Hydrostatic Extrusion at 600-700 °C on the Structure and Properties of Ti-6Al-4V Alloy. Materials Science and Engineering, 485A, 39-45.
https://doi.org/10.1016/j.msea.2007.08.081

[6]   Zherebtsov, S., Urzinova, M.M. and Salishchev, G. (2011) Spheroidization of the Lamellar Microstructure in Ti-6Al-4V Alloy during Warm Deformation and Annealing. Acta Materialia, 59, 4128-4150.
https://doi.org/10.1016/j.actamat.2011.03.037

[7]   Stolyarov, V.V., Zhu, Y.T., Alexandeov, I.V., Lowe, T.C. and Valiev, R.Z. (2003) Grain Refinement and Properties of Pure Ti Processed by Warm ECAP and Cold Rolling. Materials Science and Engineering, 343A, 43-50.
https://doi.org/10.1016/S0921-5093(02)00366-0

[8]   Zherebtsov, S.V., Salishchev, G.A., Galeyev, R.M., Valiakhmetov, O.R., Mironov, S.Y. and Semiatin, S.L. (2004) Production of Submicrocrystalline Structure in Large-Scale Ti-6Al-4V Billet by Warm Severe Deformation Processing. Scripta Materialia, 51, 1147-1151.
https://doi.org/10.1016/j.scriptamat.2004.08.018

[9]   Lonardelli, I., Gey, N., Wenk, H.-R., Humbert, M., Vogel, S.C. and Lutterotti, L. (2007) In Situ Observation of Texture Evolution during α → β and β → α Phase Transformation in Titanium Alloys Investigated by Neutron Diffraction. Acta Materialia, 55, 5718-5727.
https://doi.org/10.1016/j.actamat.2007.06.017

[10]   Shao, G. and Tsakiroporlos, P. (2018) On the ω Phase Formation in Cr-Al and Ti-Al-Cr Alloys. Acta Materialia, 48, 3671-3685.
https://doi.org/10.1016/S1359-6454(00)00168-3

[11]   Gnanamoorthy, R., Mutoh, Y. and Mizuhara, Y. (1996) Fatigue Crack Growth Behavior of Equiaxed, Duplex and Lamellar Microstructure γ-Base Titanium Aluminides. Intermetallica, 4, 525-532.
https://doi.org/10.1016/0966-9795(96)00028-3

[12]   Baldan, A. (2002) Progress in Ostwald Ripening Theories and Their Applications to Nick-Base Superalloys. Journal of Materials Science, 37, 2171-2202.
https://doi.org/10.1023/A:1015388912729

[13]   Huang, A.J., Li, G.P., Hao, Y.L. and Yang, R. (2003) Acicular α2 Precipitation Induced by Capillarity at α/β Phase Boundaries in Ti-14Al-2Zr-2Sn-3Sn-3Mo-0.5Si Titanium Alloy. Acta Materialia, 51, 4939-4952.
https://doi.org/10.1016/S1359-6454(03)00352-5

[14]   Zhang, X.D., Wiezorek, J.M.K., Baeslack, W.A. III, Evans, D.J. and Fraser, H.L. (1998) Precipitation of Ordered α2 Phase in Ti-6-22-22 Alloy. Acta Materialia, 46, 4485-4495.
https://doi.org/10.1016/S1359-6454(98)00158-X

[15]   Nag, S., Zheng, Y., Williams, R., Devaraj, A. and Boyne, A. (2012) Non-Classical Homogenous Precipitation Mediated by Composition Fluctuations in Titanium Alloys. Acta Materialia, 60, 6247-6256.
https://doi.org/10.1016/j.actamat.2012.07.033

[16]   Zhang, X.D., Wiezorek, J.M.K., Baeslack, W.A. III, Evans, D.J. and Fraser, H.L. (1999) On the Stability of ω Phase in Ti-6-22-22S and Ti-6-4 Alloys. Scipta Materialia, 41, 659-665.
https://doi.org/10.1016/S1359-6462(99)00111-6

[17]   Zeng, W.D. and Zhou, Y.G. (2000) The Influence of Microstructure on Dwell Sensitive Fatigue in Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy. Materials Science and Engineering, 290A, 33-38.
https://doi.org/10.1016/S0921-5093(00)00941-2

 
 
Top