Back
 EPE  Vol.12 No.10 , October 2020
A.C. Recombination Velocity as Applied to Determine n+/p/p+ Silicon Solar Cell Base Optimum Thickness
Abstract: This work deals with determining the optimum thickness of the base of an n+/p/p+ silicon solar cell under monochromatic illumination in frequency modulation. The continuity equation for the density of minority carriers generated in the base, by a monochromatic wavelength illumination (λ), with boundary conditions that impose recombination velocities (Sf) and (Sb) respectively at the junction and back surface, is resolved. The ac photocurrent is deduced and studied according to the recombination velocity at the junction, to extract the mathematical expressions of recombination velocity (Sb). By the graphic technique of comparing the two expressions obtained, depending on the thickness (H) of the base, for each frequency, the optimum thickness (Hopt) is obtained. It is then modeled according to the frequency, at the long wavelengths of the incident light. Thus, Hopt decreases due to the low relaxation time of minority carriers, when the frequency of modulation of incident light increases.
Cite this paper: Ndiaye, A. , Gueye, S. , Sow, O. , Diop, G. , Ba, A. , Ba, M. , Diatta, I. , Habiboullah, L. and Sissoko, G. (2020) A.C. Recombination Velocity as Applied to Determine n+/p/p+ Silicon Solar Cell Base Optimum Thickness. Energy and Power Engineering, 12, 543-554. doi: 10.4236/epe.2020.1210033.
References

[1]   Wu, C.Y. (1980) The Open-Circuit Voltage of Back-Surface-Field (BSF) p-n Junction Solar Cells in Concentrated Sunlight. Solid-State Electronics, 23, 209-216.
https://doi.org/10.1016/0038-1101(80)90004-0

[2]   Sissoko, G., Museruka, C., Corréa, A., Gaye, I. and Ndiaye, A.L. (1996) Light Spectral Effect on Recombination Parameters of Silicon Solar Cell. Renewable Energy, 3, 1487-1490.

[3]   Antilla O.J. and Hahn S.K. (1993) Study on Surface Photovoltage Measurement of Long Diffusion Length Silicon: Simulation Results. Journal of Applied Physics, 74, 558-569.
https://doi.org/10.1063/1.355343

[4]   Sissoko, G., Sivoththanam, S., Rodot, M. and Mialhe, P. (1992) Constant Illumination-Induced Open Circuit Voltage Decay (CIOCVD) Method, as Applied to High Efficiency Si Solar Cells for Bulk and Back Surface Characterization. 11th European Photovoltaic Solar Energy Conference and Exhibition, Montreux, 12-16 October 1992, 352-354.

[5]   Gupta, S., Feroz, A. and Garg, S. (1988) A Method for the Determination of the Material Parameters τ, D, Lo, S and α from Measured A.C. Short-Circuit Photocurrent. Solar Cells, 25, 61-72.
https://doi.org/10.1016/0379-6787(88)90058-0

[6]   Stokes, E.D. and Chu, T.L. (1977) Diffusion Lengths in Solar Cells from Short-Circuit Current Measurements. Applied Physics Letters, 30, 425-426.
https://doi.org/10.1063/1.89433

[7]   Saritas, M. and Mckell, H.D. (1988) Comparison of Minority Carrier Diffusion Length Measurements in Silicon by the Photoconductive Decay and Surface Photovoltage Methods. Journal of Applied Physics, 63, 4561-4567.
https://doi.org/10.1063/1.340155

[8]   Rajkanan, K., Singh, R. and Schewchun, J. (1979) Absorption Coefficient of Silicon for Solar Cell Calculations. Solidstate Electronics, 22, 793-795.
https://doi.org/10.1016/0038-1101(79)90128-X

[9]   Misiakos, K., Wang, C.H., Neugroschel, A. and Lindholm, F.A. (1990) Simultaneous Extraction of Minority-Carrier Parameters in Crystalline Semiconductors by Lateral Photocurrent. Journal of Applied Physics, 67, 321-333.
https://doi.org/10.1063/1.345256

[10]   Wang, C.H. and Neugroschel, A. (1991) Minority Carrier Lifetime and Surface Recombination Velocity Measurement by Frequency Domain Photoluminescence. IEEE Transaction on Electron Devices, 38, 2169-2170.
https://doi.org/10.1109/16.83745

[11]   Bousse, L., Mostarshed, S. and Hafeman, D. (1994) Investigation of Carrier Transport through Silicon Wafers by Photocurrent Measurements. Journal of Applied Physics, 75, 4000-4008.
https://doi.org/10.1063/1.356022

[12]   Diao, A., Thiam, N., Zoungrana, M., Sahin, G., Ndiaye, M. and Sissoko, G. (2014) Diffusion Coefficient in Silicon Solar Cell with Applied Magnetic Field and under Frequency: Electric Equivalent Circuits. World Journal of Condensed Matter Physics, 4, 84-92.
https://doi.org/10.4236/wjcmp.2014.42013

[13]   Ward, M.A.A. and Lee, K.T. (1989) Combined AC Photocurrent and Photothermal Reflectance Response Theory of Semiconducting p-n Junctions. Journal of Applied Physics, 66, 5572-5583.
https://doi.org/10.1063/1.343662

[14]   Grauby, S., Forget, B.C., Hole, S. and Fournier, D. (1999) High Resolution Photothermal Imaging of High Frequency Phenomena Using a Visible Charge Coupled Device Camera Associated with a Multichannel Lock-In Scheme. Review of Scientific Instruments, 70, 3603-3608. https://doi.org/10.1063/1.1149966

[15]   Bonham, D.B. and Orazem, M.E. (1988) A Mathematical Model for the AC Impedance of Semiconducting Electrodes. AIChE Journal, 34, 465-473.
https://doi.org/10.1002/aic.690340314

[16]   Ritter, D., Weiser, K. and Zeldov, E. (1987) Steady-State Photocarrier Grating Technique for Diffusion-Length Measurement in Semiconductors: Theory and experimental Results for Amorphous Silicon and Semi-Insulating GaAs. Journal of Applied Physics, 62, 4563-4570.
https://doi.org/10.1063/1.339051

[17]   Herberholz, R., Igalson, M. and Schock, H.W. (1998) Distinction between Bulk and Interface States in CuInSe2/CdS/ZnO by Space Charge Spectroscopy. Journal of Applied Physics, 83, 318-325.
https://doi.org/10.1063/1.366686

[18]   Longeaud, C. and Kleider, J.P. (1996) Density of States and Capture Cross-Sections in Annealed and Light-Soaked Hydrogenated Amorphous Silicon Layers. Journal of Non-Crystalline Solids, 198, 355-358.
https://doi.org/10.1016/0022-3093(95)00707-5

[19]   Carstensen, J., Popkirov, G., Bahr, J. and Föll, H. (2003) CELLO: An Advanced LBIC Measurement Technique for Solar Cell Local Characterization. Solar Energy Material and Solar Cells, 76, 599-611.
https://doi.org/10.1016/S0927-0248(02)00270-2

[20]   Anil Kumar, R., Suresh, M.S. and Nagaraju, J. (2001) Measurement of AC Parameters of Gallium Arsenide (GaAs/Ge) Solar Cell by Impedance Spectroscopy. IEEE Transaction on Electron Devices, 48, 2177-2179.
https://doi.org/10.1109/16.944213

[21]   Streever, R.L., Breslin, J.T. and Ahlstron, E.H. (1980) Surface States at the n-GaAs-SiO2 Interface from Conductance and Capacitance Measurements. Solid State Electronics, 23, 863-868.
https://doi.org/10.1016/0038-1101(80)90103-3

[22]   Vanmaekelbergh, D. and Cardon, F. (1992) Recombination in Semiconductor Electrodes Investigation by the Electrical Impedance. Electrochimica Acta, 37, 837-846.
https://doi.org/10.1016/0013-4686(92)85036-K

[23]   Yaron, G. and Frohman-Bentchrowsky, D. (1980) Capacitance Voltage Characterization of Poly Si-SiO2-Si Structures. Solid State Electronics, 23, 433-439.
https://doi.org/10.1016/0038-1101(80)90078-7

[24]   Scofield, J.H. (1995) Effects of Series and Inductance on Solar Cell Admittance Measurements. Solar Energy and Solar Cells, 37, 217-233.
https://doi.org/10.1016/0927-0248(95)00016-X

[25]   Gueye, M., Diallo, H.L., Moustapha, A.K.M., Traore, Y., Diatta, I. and Sissoko, G. (2018) Ac Recombination Velocity in a Lamella Silicon Solar Cell. World Journal of Condensed Matter Physics, 8, 185-196.
https://doi.org/10.4236/wjcmp.2018.84013

[26]   Traore, Y., Thiam, N., Thiame, M., Thiam, A., Ba, M.L., Diouf, M.S., Diatta, I., Mballo, O., Sow, E.H., Wade, M. and Sissoko, G. (2019) AC Recombination Velocity in the Back Surface of a Lamella Silicon Solar Cell under Temperature. Journal of Modern Physics, 10, 1235-1246.
https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2019.1010082


[27]   Zerbo, I., Barro, F.I., Mbow, B., Diao, A., Madougou, S., Zougmore, F. and Sissoko, G. (2004) Theoretical Study of Bifacial Silicon Solar Cell under Frequency Modulate white Light: Determination of Recombination Parameters. Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, 7-11 June 2004, 258-261.

[28]   Thiam, N.D., Diao, A., Ndiaye, M., Dieng, A., Thiam, A., Sarr, M., Maiga, A.S. and Sissoko, G. (2012) Electric Equivalent Models of Intrinsic Recombination Velocities of a Bifacial Silicon Solar Cell under Frequency Modulation and Magnetic Field Effect. Research Journal of Applied Sciences, Engineering and Technology, 4, 4646-4655.

[29]   Dieng, A., Zerbo, I., Wade, M., Maiga, A.S. and Sissoko, G. (2011) Three-Dimensional Study of a Polycrystalline Silicon Solar Cell: The Influence of the Applied Magnetic Field on the Electrical Parameters. Semiconductor Science and Technology, 26, Article ID: 095023.
https://doi.org/10.1088/0268-1242/26/9/095023

[30]   Caleb Dhanasekaran, P. and Gopalam, B.S.V. (1981) Effect of Junction Depth on the Performance of a Diffused n+ p Silicon Solar Cell. Solids-State Electronics, 24, 1077-1080.
https://doi.org/10.1016/0038-1101(81)90172-6

[31]   Del Alamo, J., Eguren, J. and Luque, A. (1980) Operating Limits of Al-Alloyed High-Low Junction for BSF Solar Cells. Solid-States-Electronics, 24, 415-420.
https://doi.org/10.1016/0038-1101(81)90038-1

[32]   Honma, N. and Munakata, C. (1987) Sample Thickness Dependence of Minority Carrier Lifetimes Measured Using an ac Photovoltaic Method. Japanese Journal of Applied Physics, 26, 2033-2036.
https://doi.org/10.1143/JJAP.26.2033

[33]   Demesmaeker, E., Symons, J., Nijs, J. and Mertens, R. (1991) The Influence Of Surface Recombination on the Limiting Efficiency and Optimum Thickness of Silicon Solar Cells. In: Luque, A., Sala, G., Palz, W., Dos Santos, G. and Helm, P., Eds., Tenth E.C. Photovoltaic Solar Energy Conference, Springer, Dordrecht, 66-67.
https://doi.org/10.1007/978-94-011-3622-8_17

[34]   Cuevas, A., Sinton, R.A. and King, R.R. (1991) A Technology-Based Comparison between Two-Sided and Back-Contact Silicon Solar Cells. The 10th European Photovoltaic Solar Energy Conference, Lisbon, 8-12 April 1991, 23-26.

[35]   Diasse, O., Diao, A., Ibrahima, L.Y., Diouf, M.S., Diatta, I., Mane, R., Traore, Y. and Sissoko, G. (2018) Back Surface Recombination Velocity Modeling in White Biased Silicon Solar Cell under Steady State. Journal of Modern Physics, 9, 189-201.
https://doi.org/10.4236/jmp.2018.92012

[36]   Arab, A.B. (1995) Photovoltaic Properties and High Efficiency of Preferentially Doped Polysilicon Solar Cells. Solids-State Electronics, 38, 1441-1447.
https://doi.org/10.1016/0038-1101(94)00283-L

[37]   Nam, L.Q., Rodot, M., Ghannam, M., Cppye, J. and De Schepper, P. and Nijs, J. (1992) Solar Cells with 15.6% Efficiency on Multicristalline Silicone, Using Impurity Gettering, Back Surface Field and Emitter Passivation. International Journal of Solar Energy, 11, 273-279.
https://doi.org/10.1080/01425919208909745

[38]   Sze, S.M. (1981) Physics of Semiconductor Devices. Wiley, New York.

[39]   Sissoko, G., Nanéma, E., Corréa, A., Biteye, P.M., Adj, M. and Ndiaye, A.L. (1998) Silicon Solar Cell Recombination Parameters Determination Using the Illuminated I-V Characteristic. Renewable Energy, 3, 1848-1851.

[40]   Ndiaye, E.H., Sahin, G., Dieng, M., Thiam, A., Diallo, H.L., Ndiaye, M. and Sissoko, G. (2015) Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar under Frequency Modulation and Irradiation. Journal of Applied Mathematics and Physics, 3, 1522-1535.
https://doi.org/10.4236/jamp.2015.311177

[41]   Diallo, H.L., Seïdou, A., Maiga, Wereme, A. and Sissoko, G. (2008) New Approach of Both Junction and Back Surface Recombination Velocities in a 3D Modelling Study of a Polycrystalline Silicon Solar Cell. The European Physical Journal Applied Physics, 42, 203-211.
https://doi.org/10.1051/epjap:2008085

[42]   Gover, A. and Stella, P. (1974) Vertical Multijunction Solar-Cell One-Dimensional Analysis. IEEE Transactions on Electron Devices, 21, 351-356.
https://doi.org/10.1109/T-ED.1974.17927

[43]   Diop, M.S., Ba, H.Y., Thiam, N., Diatta, I., Traore, Y., Ba, M.L., Sow, E.H., Mballo, O. and Sissoko, G. (2019) Surface Recombination Concept as Applied to Determinate Silicon Solar Cell Base Optimum Thickness with Doping Level Effect. World Journal of Condensed Matter Physics, 9, 102-111.
https://www.scirp.org/journal/wjcmp
https://doi.org/10.4236/wjcmp.2019.94008


[44]   Diop, G., Ba, H.Y., Thiam, N., Traore, Y., Dione, B., Ba, M.A., Diop, P., Diop, M.S., Mballo, O. and Sissoko, G. (2019) Base Thickness Optimization of a Vertical Series Junction Silicon Solar Cell under Magnetic Field by the Concept of Back Surface Recombination Velocity of Minority Carrier. ARPN Journal of Engineering and Applied Sciences, 14, 4078-4085.

[45]   Thiaw, C., Ba, M.L., Ba, M.A., Diop, G. Diatta, I., Ndiaye, M. and Sissoko, G. (2020) n+-p-p+ Silicon Solar Cell Base Optimum Thickness Determination under Magnetic Field. Journal of Electromagnetic Analysis and Applications, 12, 103-113.
https://www.scirp.org/journal/jemaa
https://doi.org/10.4236/jemaa.2020.127009


[46]   Faye, D., Gueye, S., Ndiaye, M., Ba, M.L., Diatta, I., Traore, Y., Diop, M.S., Diop, G., Diao, A. and Sissoko, G. (2020) Lamella Silicon Solar Cell under Both Temperature and Magnetic Field: Width Optimum Determination. Journal of Electromagnetic Analysis and Applications, 12, 43-55
https://www.scirp.org/journal/paperinformation.aspx?paperid=99976
https://doi.org/10.4236/jemaa.2020.124005


[47]   Ndiaye, F.M., Ba, M.L., Ba, M.A., Diop, G., Diatta, I., Sow, E.H., Mballo, O. and Sissoko, G. (2020) Lamella Silicon Optimum Width Determination under Temperature. International Journal of Advanced Research, 8, 1409-1419.
https://doi.org/10.21474/IJAR01/11228

[48]   Dia, O., El Moujtaba, M.A.O., Gueye, S., Ba, M.L., Diatta, I., Diop, G., Diouf, M.S. and Sissoko, G. (2020) Optimum Thickness Determination Technique as Applied to a Series Vertical Junction Silicon Solar Cell under Polychromatic Illumination: Effect of Irradiation. International Journal of Advanced Research, 8, 616-626.
https://doi.org/10.21474/IJAR01/10967

[49]   Ba. M.L., Thiam, N., Thiame, M., Traore, Y., Diop, M.S., Ba, M., Sarr, C.T., Wade, M. and Sissoko, G. (2019) Base Thickness Optimization of a (n+-p-p+) Silicon Solar Cell in Static Mode under Irradiation of Charged Particles. Journal of Electromagnetic Analysis and Applications, 11, 173-185.
https://doi.org/10.4236/jemaa.2019.1110012

[50]   Dede, M.M.S., Ba, M.L., Ba, M.A., Ndiaye, M., Gueye, S., Sow, E. H., Diatta, I., Diop, M.S., Wade, M. and Sissoko, G. (2020) Back Surface Recombination Velocity Dependent of Absorption Coefficient as Applied to Determine Base Optimum Thickness of an n+/p/p+ Silicon Solar Cell. Energy and Power Engineering, 12, 445-458.
https://www.scirp.org/journal/epe
https://doi.org/10.4236/epe.2020.127027


 
 
Top