Back
 AJPS  Vol.11 No.9 , September 2020
Design and Construction of a Pneumatic Temporary Immersion Bioreactor System for the Multiplication of Ananas comosus var. Trujillana Red
Abstract: The present work initially identified the design parameters of a temporary immersion bioreactor to later scale it to a complete system for the in vitro multiplication of Ananas comosus var. Trujillana Red. Thus, a low-cost pneumatic temporary immersion bioreactor system was designed and built with 24 tanks of 2 L each. The automation of the system was designed and implemented by means of a timer circuit whose design parameters were: duration of the propagation process, which depends on the multiplication period of the crop and is an open variable, which means that the operator decides when to turn off the system; the duration of each dive, which for reasons of complexity of the algorithm was standardized as one minute; immersion frequency, which was programmed for intervals of 1, 2, 3, 4, 5, 6, 7, 8 hours respectively and duration of aeration, which from a test run times of 0.20 were chosen, 30, 40, 50, 60, 70, and 80 seconds that correspond to the time of delivery of compressed air; additionally, the multiplication rate of Ananas comosus var. Trujillana Red in the immersion system which was 6.5 times per propagative unit inoculated in thirty days.
Cite this paper: Solórzano-Acosta, R. and Guerrero-Padilla, M. (2020) Design and Construction of a Pneumatic Temporary Immersion Bioreactor System for the Multiplication of Ananas comosus var. Trujillana Red. American Journal of Plant Sciences, 11, 1429-1442. doi: 10.4236/ajps.2020.119103.
References

[1]   Basail, M., Medero, V., Ventura, J., Otero, E., Torres, M., López, J., Cabrera, M., Santos, A., Rayas, A., Bauta, M. and Beovidez, Y. (2012) Multiplicación del clon de banano FHIA-18 (AAAB) en Sistema de Inmersión Temporal. Revista Colombiana de Biotecnología, 14, 8-19.

[2]   Juárez, A., Manjarrez, E. and Barrón, H. (2011) Diseno de un biorreactor de inmersión temporal para la micropropagación de Aztekium hintonii. Expociencias Nacional México D.F. 13 p.

[3]   Georgiev, V., Schumann, A., Pavlov, A. and Bley, T. (2014) Temporary Inmertion Systems in Plant Biotechnology. Engineering in Life Sciences, 14, 607-621.
https://doi.org/10.1002/elsc.201300166

[4]   Gueguim, E., Oloke, J., Lateef, A., Azanfack, R. and Adeyemi, A. (2010) Implementation Details of Computerized Temporary Inmersion Bioreactor (TIB): A Fermentation Case of Pleurotus pulmonarius. Biotechnology & Biotechnological Equipment, 24, 2149-2153.
https://doi.org/10.2478/V10133-010-0093-4

[5]   Risdianto, H., Harjati, S., Niloperbowo, W. and Setiadi, T. (2007) The Influence of Immersion Period on Laccase Production by Marasmius sp. in A Modified Temporary Bioreactor. The 20th International Symposium on Chemical Engineering, Daejeon.

[6]   Scheidt, G.N., Arakaki, A.H., Chimilovski, J.S., Portella, A.C.F., Spier, M.R., Woiciechowski, A.L., Biasi, L.A. and Soccol, C.R. (2009) Utilization of the Biorreactor of Imersion by Bubbles at the Micropropagation of Ananas comosus L. Merril. Brazilian Archives of Biology and Technology, 52, 37-43.
https://doi.org/10.1590/S1516-89132009000700005

[7]   Acuna, R. (2009) Cómo fabricar un biorreactor artesanal para la macropropagación de brotes organogénicos de tejidos vegetales. con componentes de catálogo. Revista Tecnología en Marcha, 17, 92-96.

[8]   Monroy, I.E. and Filgueira, J.J. (2010) Organogenesis Directa en Medio Líquido en Clavel en un Bioreactor de Bajo Costo. Revista de la Facultad de Ciencias Básicas, 6, 84-93.

[9]   Arencibia, A., Vergara, C., Quiroz, K., Carrasco, B., Bravo, C. and García, R. (2013) An Approach for Micropropagation of Blueberry (Vaccinium corymbosum L.) Plants Mediated by Temporay Inmersion Bioreactors (TIBs). American Journal of Plant Sciences, 4, 1022-1028.
https://doi.org/10.4236/ajps.2013.45126

[10]   National Center for Genetic Resources and Biotechnology (NACGRAB) (2012) The Potential of Temporary Inmersion Bipreactors (TIBs) in Meeting Crop Production Demand in Nigeria. Journal of Biology Life Science, 3, 66-86.
https://doi.org/10.5296/jbls.v3i1.1156

[11]   Balogun, M., Maroya, N., Asiedu, R. and Taiwo, J. (2014) Novelty, Rapidity and Quality in Seed Yam Production: The Case of Temporary Inmersion Bioreactors. YIIFSWA Working Paper Series, Nigeria, 6-10.

[12]   Bartholomew, D., Paull, R. and Rohrbach, K. (2003) The Pineapple: Botany, Production and Uses. New York, US, CAB International. 301 p.
https://doi.org/10.1079/9780851995038.0000

[13]   Llanos, C. (2015) Micropropagación in vitro de pina, Ananas comosus (L.) merr var. MD2 (bromeliaceae) bajo un sistema de biorreactores de inmersión temporal. Tesis para optar el título profesional de Biólogo con mención en Botánica. Universidad Nacional Mayor de San Marcos, Lima, Perú, 64 p.

[14]   Borbor, M., Rodríguez, J., Urcia, M., Cedano, C. and Zavaleta, J. (2018) Influencia de la procedencia de la semilla por la edad de la plantación en el crecimiento, el rendimiento y calidad de pina “Roja Trujillana”. Scientia Agropecuaria, 9, 209-214.
https://doi.org/10.17268/sci.agropecu.2018.02.05

[15]   Cruzat, G. (2009) Resultados y lecciones en sistema de inmersión temporal en especies anuales, frutales y vides. Chile. Ograma Ltda. 8-10 p.

[16]   Angel, J. and Gonzales, J. (2013) Evaluación de dos métodos de micropropagación masal en pina (Ananas comosus L. Merr.) variedad golden. Tesis para optar el título de Ingeniero Agrónomo, Universidad del Salvador, San Salvador, 86 p.

[17]   Mataix, C. (1982) Mecánica de fluidos y máquinas hidraúlicas. México, D.F., Oxford, 660 p.

[18]   Murashige, T. and Skoog, F. (1962) A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physilogia Plantarum, 15, 473-497.

[19]   Saldarriaga, J. (1998) Hidraúlica de tuberías. Santafé de Bogotá. McGraw-Hill Interamericana, New York, 564 p.

[20]   Albarracín, C. (2012) Evaluación de la eficiencia de un sistema de inmersión temporal frente al método de propagación convencional en la multiplicación in vitro de cilantro cimarrón (Eryngium foetidum) a partir de hojas, yemas y segmentos nodales. Tesis Ing. Biotecnología. Sangolquí, EC, 203 p.

[21]   Sotomayor, J. and Martínez, C. (2011) Paquete tecnológico para la producción de pina en el Sur de Sinaloa. Fundación Produce Sinaloa A.C. 21p.

[22]   García, M. and Serrano, H. (2005) La pina, Ananas comosus (L.) Merr. (Bromeliaceae), algo más que un fruto dulce y jugoso. Contactos, 56, 55-61.

[23]   Berthouly, M. and Etienne, H. (2005) Temporaly inmersión System: A New Concept for Use Liquid Medium in Mass Propagation. In: Hvoslef-Eide, A.K. and Preil, W., Eds., Liquid Culture Systems for in Vitro Plant Propagation, Springer, Dordrecht, 165-195.
https://doi.org/10.1007/1-4020-3200-5_11

[24]   González, K. (2003) Respuesta de tres explantes de vainilla (Vanilla planifolia) a diferentes frecuencias de inmersión temporal. Tesis. Bach. Ing. Biot. Instituto Tecnológico de Costa Rica, Cartago, CR, 10-11.

 
 
Top