[1] Ahas, R., Jaagus, J. and Aasa, A. (2000) The Phenological Calendar of Estonia and Its Correlation with Mean Air Temperature. International Journal of Biometeorology, 44, 159-166.
https://doi.org/10.1007/s004840000069
[2] Ge, Q.S., Wang, H.J., Rutishauser, T. and Dai, J.H. (2015) Phenological Response to Climate Change in China: A Meta-Analysis. Global Change Biology, 21, 265-274.
https://doi.org/10.1111/gcb.12648
[3] Menzel, A. (2003) Plant Phenological Anomalies in Germany and Their Relation to Air Temperature and NAO. Climatic Change, 57, 243-263.
https://doi.org/10.1023/A:1022880418362
[4] Liu, Y.J. and Dai, L. (2020) Modelling the Impacts of Climate Change and Crop Management Measures on Soybean Phenology in China. Journal of Cleaner Production, 262, Article ID: 121271.
https://doi.org/10.1016/j.jclepro.2020.121271
[5] Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., Guldberg, O.H. and Bairlein, F. (2002) Ecological Responses to Recent Climate Change. Nature, 416, 389-395.
https://doi.org/10.1038/416389a
[6] Rohde, A. and Bhalerao, R.P. (2007) Plant Dormancy in the Perennial Context. Trends in Plant Science, 12, 217-223.
https://doi.org/10.1016/j.tplants.2007.03.012
[7] Alcalá, A.R. and Barranco, D. (1992) Prediction of Flowering Time in Olive for the Cordoba Olive Collection. American Society for Horticultural Science, 27, 1205-1207.
https://doi.org/10.21273/HORTSCI.27.11.1205
[8] Behdani, M.A., Koocheki, A., Nassiri, M. and Rezvani, P. (2008) Models to Predict Flowering Time in the Main Saffron Production Regions of Khorasan Province. Journal of Applied Sciences, 8, 907-909.
https://doi.org/10.3923/jas.2008.907.909
[9] Yasuyuki, A.O.N.O. and Yukio, O.M.O.T.O. (1990) A Simplified Method for Estimation of Blooming Date for the Cherry by Means of DTS. Journal of Agricultural Meteorology, 46, 147-151.
[10] Aono, Y. (1993) Climatological Studies on Blooming of Cherry Tree (Prunus yedoensis) by Means of DTS Method. Bulletin of the University of Osaka Prefecture. Ser. B, Agriculture & Life Sciences, 45, 155-192.
[11] Sugiura, T. and Honjo, H. (1997) A Dynamic Model for Predicting E Flowering Date Developed Using an Endodormancy Break Model and A Flower Bud Development Model in Japanese Pear. Journal of Agricultural Meteorology, 52, 897-900.
[12] Chun, J.A., Kang, K., Kim, D., Han, H.-H. and Son, I.-C. (2017) Prediction of Full Blooming Dates of Five Peach Cultivars (Prunus persica) Using Temperature-Based Models. Scientia Horticulturae, 220, 250-258.
https://doi.org/10.1016/j.scienta.2017.04.007
[13] Hur, J. and Ahn, J.B. (2017) Assessment and Prediction of the First-Flowering Dates for the Major Fruit Trees in Korea Using a Multi-RCM Ensemble. International Journal of Climatology, 37, 1603-1618.
https://doi.org/10.1002/joc.4800
[14] El Yaacoubi, A., Oukabli, A., Hafidi, M., Farrera, I., Ainane, T., Cherkaoui, S.I. and Legave, J.-M. (2019) Validated Model for Apple Flowering Prediction in the Mediterranean Area in Response to Temperature Variation. Scientia Horticulturae, 249, 59-64.
https://doi.org/10.1016/j.scienta.2019.01.036
[15] Chauhan, Y.S., Ryan, M., Chandra, S. and Sadras, V.O. (2019) Accounting for Soil Moisture Improves Prediction of Flowering Time in Chickpea and Wheat. Scientific Reports, 9, Article No. 7510.
https://doi.org/10.1038/s41598-019-43848-6
[16] Schneemilch, M., Michael, K. and Williams, C.R. (2012) Flowering Timing Prediction in Australian Native Understorey Species (Acrotriche R.Br Ericaceae) Using Meteorological Data. International Journal of Biometeorology, 56, 95-105.
https://doi.org/10.1007/s00484-010-0400-7
[17] Cenci, C.A. and Ceschia, M. (2000) Forecasting of the Flowering Time for Wild Species Observed at Guidonia, Central Italy. International Journal of Biometeorology, 44, 88-96.
https://doi.org/10.1007/s004840000065
[18] Park, I., Jones, A. and Mazer, S.J. (2019) Phenoforecaster: A Software Package for the Prediction of Flowering Phenology. Applications in Plant Sciences, 7, 1230-1236.
https://doi.org/10.1002/aps3.1230
[19] Elizondo, D.A., Mcclendon, R.W. and Hoogenboom, G. (1994) Neural Network Models for Predicting Flowering and Physiological Maturity of Soybean. Transactions of the ASAE, 37, 981-988.
https://doi.org/10.13031/2013.28168
[20] Hermans, M. and Schrauwen, B. (2013) Training and Analysis Deep Recurrent Neural Networks. Advances in Neural Information Processing Systems, 190-198.
[21] Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[22] Gers, F.A., Schmidhuber, J. and Cummins, F. (2000) Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12, 2451-2471.
https://doi.org/10.1162/089976600300015015
[23] Gers, F.A., Schraudolph, N.N. and Schmidhuber, J. (2003) Learning Precise Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, 3, 115-143.
[24] Vega-Pons, S. and Ruiz-Shulcloper, J. (2011) A Survey of Clusering Ensemble Algorithms. International Journal of Pattern Recognition and Artificial Intelligence, 25, 337-372.
https://doi.org/10.1142/S0218001411008683
[25] Barnett, T.L. and Thompson, D.R. (1982) The Use of Large-Area Spectral Data in Wheat Yield Estimation. Remote Sensing of Environment, 12, 509-518.
https://doi.org/10.1016/0034-4257(82)90025-6
[26] Tollenaar, M., Fridgen, J., Tyagi, P., Stackhouse, P.W. and Kumudini, S. (2017) The Contribution of Solar Brightening to the US Maize Yield Trend. Nature Climate Change, 7, 275-278.
https://doi.org/10.1038/nclimate3234
[27] Togliatti, K., Archontoulis, S.V., Dietzel, R., Dietzel, R., Puntel, L. and Vanloocke, A. (2017) How Does Inclusion of Weather Forecasting Impact In-Season Crop Model Predictions? Field Crops Research, 214, 261-272.
https://doi.org/10.1016/j.fcr.2017.09.008