MSA  Vol.11 No.9 , September 2020
Physical, Water Diffusion and Micro-Structural Analysis of “Canarium Schweinfurthii Engl”
Abstract: The purpose of this study is to determine the morphological, microstructural characteristics and water diffusion parameters of the Canarium schweinfurthii (CS) shellnut. This work is part of a vast project to valorize the above-mentioned cores for possible industrial use as charges in composites or abrasives materials. The study was based on the characterization of intrinsic physical characteristics of the coreshells scanning electron microscopic (SEM) observations desorption, adsorption and absorption kinetics. The water diffusion phenomenon was modeled and it appears that the Page model well predicted the kinetic of drying, absorption and adsorption. The effective diffusion coefficient and the energy of activation were calculated at three isothermal temperatures (50°C, 70°C and 90°C). There was a tendency for hysteresis in the sorption-desorption cycles. These results strongly predicted the possibility of using these products as a filler in composites, clay building materials and cement because of their high water diffusion stability on a macroscopic scale.
Cite this paper: Koungang, B. , Ndapeu, D. , Tchemou, G. , Mejouyo, P. , Ntcheping, B. , Foba, J. , Courard, L. and Njeugna, E. (2020) Physical, Water Diffusion and Micro-Structural Analysis of “Canarium Schweinfurthii Engl”. Materials Sciences and Applications, 11, 626-643. doi: 10.4236/msa.2020.119042.

[1]   Jacques, V. and Faure, J.-J. (1996) Fruitiers sauvages d’Afrique: Espèces du Cameroun. Editions Nguila-Kerou, Clohars Carnoet.

[2]   Matig, O.E., Ndoye, O., Kengue, J. and Awono, A. (2006) Les fruitiers forestiers comestibles du Cameroun. IPGRI Regional Office for West and Central Africa, Cotonou.

[3]   Temgoua, L., Njoukam, R. and Peltier, R. (2011) Plantations ingénieuses de bois d’æuvre par les paysans de l’Ouest-Cameroun. Bois et Forets des Tropiques, 309, 63-76.

[4]   Nkouam, G.B. (2007) Conservation des fruits du karité (Vitellaria paradoxa Gaertn.) et de l’aiéle (Canarium schweinfurthii Engl.): Isothermes de sorption d’eau et extraction des matières grasses des fruits stockés. Institut National Polytechnique de Lorraine.

[5]   Nyam, M.A., Makut, M.D., Itelima, J.U. and Daniel, A.M. (2014) Nutritional Potential of the Fruits of Black Olive (Canarium schweinfurthii Linn) from Plateau State, Nigeria. Pakistan Journal of Nutrition, 13, 335-339.

[6]   Abayeh, O.J., Abdulrazaq, A.K. and Olaogun, R. (1999) Quality Characteristics of Canarium schweinfurthii Engl. Oil. Plant Foods for Human Nutrition, 54, 43-48.

[7]   Njoukam, R. and Peltier, R. (2002) L’aiélé (Canarium schweinfurthii Engl.): Premier essai de plantation dans l’ouest du Cameroun. Fruits, 57, 239-248.

[8]   Tcheghebe, O.T., Seukep, A.J. and Tatong, F.N. (2016) A Review on Traditional Uses, Phytochemical Composition and Pharmacological Profile of Canarium schweinfurthii Eng. Natural Sciences, 14, 17-22.

[9]   Bassey, U., et al. (2015) Adsorption Isotherm, Kinetics and Thermodynamics Study of Cr (VI) Ions onto Modified Activated Carbon from Endocarp of Canarium schweinfurthii. International Research Journal of Pure and Applied Chemistry, 6, 46-55.

[10]   Maguie, K.A., Nsami, N.J., Daouda, K., Randy, C.N. and Mbadcam, K.J. (2017) Adsorption Study of the Removal of Copper (II) Ions Using Activated Carbon Based Canarium schweinfurthii Shells Impregnated with ZnCl2. IRA International Journal of Applied Science, 8, 18.

[11]   Olawale, A. and Ajayi, O. (2009) Thermal Activation of Canarium schweinfhurthi Nutshell. Australian Journal of Basic and Applied Sciences, 3, 3801-3807.

[12]   Ndapeu, D., et al. (2020) Elaboration and Characterization of a Composite Material Based on Canarium schweinfurthii Engl. Cores with a Polyester Matrix. Materials Sciences and Applications, 11, 204-215.

[13]   Noumi, G.B., Laurent, S., Ngameni, E., Kapseu, C., Jannot, Y. and Parmentier, M. (2004) Modélisation de la déshydratation de la pulpe des fruits du Canarium schweinfurthii Engl. Tropicultura, 22, 70-76.

[14]   Ehiem, J.C., Ndirika, V.I.O., Onwuka, U.N., Gariepy, Y. and Raghavan, V. (2019) Water Absorption Characteristics of Canarium schweinfurthii Fruits. Information Processing in Agriculture, 6, 386-395.

[15]   Nguyen, T.H. (2016) étude expérimentale et modélisation du procédé de séchage des végétaux. Thesis at Université de Bretagne-Sud.

[16]   Ndapeu, D., Njeugna, E., Bistac, S.B., Drean, J.Y., Fogue, M. and Foba, J.N. (2013) Experimental Study of the Drying Kinetics of the Coconut Shells (Nucifera) of Cameroon. Materials Sciences and Applications, 4, 822-830.

[17]   Lahsasni, S., Kouhila, M. and Mahrouz, M. (2004) Adsorption-Desorption Isotherms and Heat of Sorption of Prickly Pear Fruit (Opuntia ficus indica). Energy Conversion and Management, 45, 249-261.

[18]   Pehlivan, H., Ates, A. and Ozdemir, M. (2016) Experimental Evaluation of Drying Characteristics of Sewage Sludge and Hazelnut Shell Mixtures. Heat and Mass Transfer, 52, 2367-2379.

[19]   Benghalem, A. and Vergnaud, J.M. (1994) Diffusion of a Chemical through the Liquid Located in a Polymer: Modelling and Experiments. Polymer Testing, 13, 35-45.

[20]   Khatir, Y., Bouzon, J. and Vergnaud, J.M. (1986) Liquid Sorption by Rubber Sheets and Evaporation: Models and Experiments. Polymer Testing, 6, 253-265.

[21]   Polyák, P., Szemerszki, D., Benke, H.C. and Pukánszky, B. (2017) A Novel Method for the Determination of Diffusion Coefficients in Amorphous Poly(3-hydroxybutyrate). Polymer Testing, 63, 342-348.

[22]   Petrou, A.L., Roulia, M. and Tampouris, K. (2002) The Use of the Arrhenius Equation in the Study of Deterioration and of Cooking of Foods—Some Scientific and Pedagogic Aspects. Chemical Education Research and Practice in Europe, 3, 87-97.

[23]   Crank, J. (1975) The Mathematics of Diffusion. 2nd Edition, Oxford University Press, London.

[24]   Njeugna, E., Ndapeu, D., Bistac, S., Foba, J.N. and Fogue, M. (2013) Contribution to the Characterisation of the Coconut Shells (Coco nucifera) of Cameroon. International Journal of Mechanics Structural, 4, 1-20.

[25]   Elenga, R.G., Dirras, G.F., Maniongui, J.G. and Mabiala, B. (2011) Thin-Layer Drying of Raffia Textilis Fiber. BioResources, 6, 4135-4144.

[26]   Madhiyanon, T., Phila, A. and Soponronnarit, S. (2009) Models of Fluidized Bed Drying for Thin-Layer Chopped Coconut. Applied Thermal Engineering, 29, 2849-2854.

[27]   Aquino, E.M.F., Sarmento, L.P.S., Oliveira, W. and Silva, R.V. (2007) Moisture Effect on Degradation of Jute/Glass Hybrid Composites. Journal of Reinforced Plastics and Composites, 26, 219-233.

[28]   Espert, A., Vilaplana, F. and Karlsson, S. (2004) Comparison of Water Absorption in Natural Cellulosic Fibres from Wood and One-Year Crops in Polypropylene Composites and Its Influence on Their Mechanical Properties. Composites Part A: Applied Science and Manufacturing, 35, 1267-1276.

[29]   Spinacé, M.A.S., Lambert, C.S., Fermoselli, K.K.G. and De Paoli, M.A. (2009) Characterization of Lignocellulosic Curaua Fibres. Carbohydrate Polymer, 77, 47-53.

[30]   Ndapeu, D., Njeugna, E., Sikame, N.R., Bistac, S.B., Drean, J.Y. and Fogue, M. (2016) Experimental Study of the Water Absorption Kinetics of the Coconut Shells (Nucifera) of Cameroun. Materials Sciences and Applications, 7, 159-170.

[31]   Rudin, A. and Choi, P. (2013) Diffusion in Polymers. In: The Elements of Polymer Science & Engineering, 3rd Edition, Academic Press, San Diego, 275-304.

[32]   Houria, M. and Nourredine, A. (2011) Les granulats recyclés humidifiés: Comportements des bétons frais et durcis. XXIXe Rencontres Univ. Génie Civil, Tlemcen, 401-410.