Back
 CE  Vol.11 No.9 , September 2020
RETRACTED: Recognizing Student’s Learning-Centered Affective States in Conversation with Intelligent Multimodal Analytics
Abstract: Short Retraction Notice The paper is withdrawn from "Creative Education" due to its indexing databases that don’t meet the author’s PhD examination. This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Anita LIU (Editorial Assistant of CE) The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
Cite this paper:   
References

[1]   Bohus, D., & Horvitz, E. (2009). Models for Multiparty Engagement in Open-World Dialog. In Proceedings of the SIGDIAL 2009 Conference: The 10th Annual Meeting of the Special Interest Group on Discourse and Dialogue (pp. 225-234). Stroudsburg, PA: Association for Computational Linguistics.
https://doi.org/10.3115/1708376.1708409

[2]   Bosch, N., D’Mello, S. K., Baker, R. S., Ocumpaugh, J., Shute, V., Ventura, M., Wang, L., & Zhao, W. (2016). Detecting Student Emotions in Computer-Enabled Classrooms. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (pp. 4125-4129). Palo Alto, CA: AAAI Press.

[3]   Bosch, N., D’Mello, S., Baker, R., Ocumpaugh, J., Shute, V., Ventura, M., Wang, L., & Zhao, W. (2015). Automatic Detection of Learning-Centered Affective States in the Wild. In Proceedings of the 20th International Conference on Intelligent User Interfaces (pp. 379-388). New York, NY: Association for Computing Machinery.
https://doi.org/10.1145/2678025.2701397

[4]   Burt, K. B., & Obradovic, J. (2013). The Construct of Psychophysiological Reactivity: Statistical and Psychometric Issues. Developmental Review, 33, 29-57.
https://doi.org/10.1016/j.dr.2012.10.002

[5]   Calvo, R. A., & D’Mello, S. (2010). Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Transactions on Affective Computing, 1, 18-37.
https://doi.org/10.1109/T-AFFC.2010.1

[6]   Calvo, R., & D’Mello, S. K. (Eds.) (2011). New Perspectives on Affect and Learning Technologies. New York, NY: Springer.
https://doi.org/10.1007/978-1-4419-9625-1

[7]   Castellano, G., Kessous, L., & Caridakis, G. (2008). Emotion Recognition through Multiple Modalities: Face, Body Gesture, Speech. In C. Peter, & R. Beale (Eds.), Affect and Emotion in Human-Computer Interaction (pp. 92-103). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-540-85099-1_8

[8]   Chen, L., Li, X., Xia, Z., Song, Z., Morency, L. P., & Dubrawski, A. (2016). Riding an Emotional Roller-Coaster: A Multimodal Study of Young Child’s Math Problem Solving Activities. Proceedings of the 9th International Conference on Educational Data Mining, Raleigh, NC, 29 June-2 July 2016, 38-45.

[9]   Cowley, B., Ravaja, N., & Heikura, T. (2013). Cardiovascular Physiology Predicts Learning Effects in a Serious Game Activity. Computers & Education, 60, 299-309.
https://doi.org/10.1016/j.compedu.2012.07.014

[10]   Craig, S., Graesser, A., Sullins, J., & Gholson, B. (2004). Affect and Learning: An Exploratory Look into the Role of Affect in Learning with AutoTutor. Journal of Educational Media, 29, 241-250.
https://doi.org/10.1080/1358165042000283101

[11]   D’Mello, S., & Graesser, A. (2012). Dynamics of Affective States during Complex Learning. Learning and Instruction, 22, 145-157.
https://doi.org/10.1016/j.learninstruc.2011.10.001

[12]   D’Mello, S., Craig, S., Fike, K., & Graesser, A. (2009). Responding to Learners’ Cognitive-Affective States with Supportive and Shakeup Dialogues. In J. Jacko (Ed.), Human-Computer Interaction. Ambient, Ubiquitous and Intelligent Interaction (pp. 595-604). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-02580-8_65

[13]   De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2010). Attention Guidance in Learning from a Complex Animation: Seeing Is Understanding? Learning and Instruction, 20, 111-122.
https://doi.org/10.1016/j.learninstruc.2009.02.010

[14]   Devillers, L., & Vidrascu, L. (2007). Real-Life Emotion Recognition in Speech. In C. Müller (Ed.), Speaker Classification II (pp. 34-42). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-540-74122-0_4

[15]   Du, P., Kibbe, W. A., & Lin, S. M. (2006). Improved Peak Detection in Mass Spectrum by Incorporating Continuous Wavelet Transform-Based Pattern Matching. Bioinformatics, 22, 2059-2065.
https://doi.org/10.1093/bioinformatics/btl355

[16]   Eyben, F., Wollmer, M., & Schuller, B. (2010). Opensmile: The Munich Versatile and Fast Open-Source Audio Feature Extractor. In Proceedings of the 18th ACM International Conference on Multimedia (pp. 1459-1462). New York, NY: Association for Computing Machinery.
https://doi.org/10.1145/1873951.1874246

[17]   Forbes-Riley, K., & Litman, D. (2011). When Does Disengagement Correlate with Learning in Spoken Dialog Computer Tutoring? In G. Biswas, S. Bull, J. Kay, & A. Mitrovic (Eds.), International Conference on Artificial Intelligence in Education (pp. 81-89). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-21869-9_13

[18]   Gomes, J., Yassine, M., Worsley, M., & Blikstein, P. (2013). Analysing Engineering Expertise of High School Students Using Eye Tracking and Multimodal Learning Analytics. In S. K. D’Mello, R. A. Calvo, & A. Olney (Eds.), Proceedings of the 6th International Conference on Educational Data Mining. International Educational Data Mining Society.

[19]   Graesser, A., Chipman, P., King, B., McDaniel, B., & D’Mello, S. (2007). Emotions and Learning with Auto Tutor. Frontiers in Artificial Intelligence and Applications, 158, 569.

[20]   Graesser, A., Ozuru, Y., & Sullins, J. (2010). What Is a Good Question? In M. McKeown, & G. Kucan (Eds.), Bringing Reading Research to Life (pp. 112-141). New York: Guilford.

[21]   Grafsgaard, J., Wiggins, J. B., Boyer, K. E., Wiebe, E. N., & Lester, J. (2013). Automatically Recognizing Facial Expression: Predicting Engagement and Frustration. Educational Data Mining 2013.

[22]   Hoque, M. E., McDuff, D. J., & Picard, R. W. (2012). Exploring Temporal Patterns in Classifying Frustrated and Delighted Smiles. IEEE Transactions on Affective Computing, 3, 323-334.
https://doi.org/10.1109/T-AFFC.2012.11

[23]   Hussain, M. S., AlZoubi, O., Calvo, R. A., & D’Mello, S. K. (2011). Affect Detection from Multichannel Physiology during Learning Sessions with AutoTutor. In G. Biswas, S. Bull, J. Kay, & A. Mitrovic (Eds.), International Conference on Artificial Intelligence in Education (pp. 131-138). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-21869-9_19

[24]   Kapoor, A., Burleson, W., & Picard, R. W. (2007). Automatic Prediction of Frustration. International Journal of Human-Computer Studies, 65, 724-736.
https://doi.org/10.1016/j.ijhcs.2007.02.003

[25]   Kononenko, I. (1994). Estimating Attributes: Analysis and Extensions of RELIEF. In F. Bergadano, & L. De Raedt (Eds.), European Conference on Machine Learning (pp. 171-182). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/3-540-57868-4_57

[26]   Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33, 159-174.
https://doi.org/10.2307/2529310

[27]   Lin, J., Keogh, E., Lonardi, S., & Chiu, B. (2003). A Symbolic Representation of Time Series, with Implications for Streaming Algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (pp. 2-11). New York, NY: Association for Computing Machinery.
https://doi.org/10.1145/882082.882086

[28]   Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: A Novel Symbolic Representation of Time Series. Data Mining and Knowledge Discovery, 15, 107-144.
https://doi.org/10.1007/s10618-007-0064-z

[29]   Luft, C. D. B., Nolte, G., & Bhattacharya, J. (2013). High-Learners Present Larger mid-Frontal Theta Power and Connectivity in Response to Incorrect Performance Feedback. Journal of Neuroscience, 33, 2029-2038.
https://doi.org/10.1523/JNEUROSCI.2565-12.2013

[30]   Matthews, G., Campbell, S. E., Falconer, S., Joyner, L. A., Huggins, J., Gilliland, K., & Warm, J. S. (2002). Fundamental Dimensions of Subjective State in Performance Settings: Task Engagement, Distress, and Worry. Emotion, 2, 315-340.
https://doi.org/10.1037/1528-3542.2.4.315

[31]   Monkaresi, H., Bosch, N., Calvo, R. A., & D’Mello, S. K. (2016). Automated Detection of Engagement Using Video-Based Estimation of Facial Expressions and Heart Rate. IEEE Transactions on Affective Computing, 8, 15-28.
https://doi.org/10.1109/TAFFC.2016.2515084

[32]   Pardos, Z. A., Baker, R. S., San Pedro, M. O., Gowda, S. M., & Gowda, S. M. (2014). Affective States and State Tests: Investigating How Affect and Engagement during the School Year Predict End-of-Year Learning Outcomes. Journal of Learning Analytics, 1, 107-128.
https://doi.org/10.18608/jla.2014.11.6

[33]   Peng, S., Chen, L., Gao, C., & Tong, R. J. (2020a). Predicting Students’ Attention Level with Interpretable Facial and Head Dynamic Features in an Online Tutoring System (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 34, 13895-13896.
https://doi.org/10.1609/aaai.v34i10.7220

[34]   Peng, S., Ohira, S., & Nagao, K. (2018). Automatic Evaluation of Students’ Discussion Skill Based on Their Heart Rate. In B. McLaren, R. Reilly, S. Zvacek, & J. Uhomoibhi (Eds.), International Conference on Computer Supported Education (pp. 572-585). Berlin: Springer.
https://doi.org/10.1007/978-3-030-21151-6_27

[35]   Peng, S., Ohira, S., & Nagao, K. (2019). Prediction of Students’ Answer Relevance in Discussion Based on their Heart-Rate Data. International Journal of Innovation and Research in Educational Sciences (IJIRES), 6, 414-424.

[36]   Peng, S., Ohira, S., & Nagao, K. (2020b). Reading Students’ Multiple Mental States in Conversation from Facial and Heart Rate Cues. Proceedings of the 12th International Conference on Computer Supported Education, 1, 68-76.
https://doi.org/10.5220/0009564000680076

[37]   Robison, J., McQuiggan, S., & Lester, J. (2009). Evaluating the Consequences of Affective Feedback in Intelligent Tutoring Systems. In C. Muhl, D. Heylen, & A. Nijholt (Eds.), Proceedings of International Conference on Affective Computing & Intelligent Interaction (pp. 37-42). Los Alamitos, CA: IEEE Computer Society Press.
https://doi.org/10.1109/ACII.2009.5349555

[38]   Rodrigo, M. M. T., & Baker, R. S. J. d. (2011a). Comparing the Incidence and Persistence of Learners’ Affect during Interactions with Different Educational Software Packages. In R. Calvo, & S. D’Mello (Eds.), New Perspective on Affect and Learning Technologies (pp. 183-200). New York, NY: Springer.
https://doi.org/10.1007/978-1-4419-9625-1_14

[39]   Rodrigo, M. M. T., & Baker, R. S. J. d. (2011b). Comparing Learners’ Affect While Using an Intelligent Tutor and an Educational Game. Research and Practice in Technology Enhanced Learning, 6, 43-66.

[40]   Rodrigo, M. M. T., Baker, R. S., Agapito, J., Nabos, J., Repalam, M. C., Reyes, S. S., & San Pedro, M. O. C. (2012). The Effects of an Interactive Software Agent on Student Affective Dynamics While Using an Intelligent Tutoring System. IEEE Transactions on Affective Computing, 3, 224-236.
https://doi.org/10.1109/T-AFFC.2011.41

[41]   Schuller, B., Steidl, S., & Batliner, A. (2009). The INTERSPEECH 2009 Emotion Challenge. 10th Annual Conference of the International Speech Communication Association, Brighton UK, 6-10 September 2009, 312-315.

[42]   Sikka, K., Dykstra, K., Sathyanarayana, S., Littlewort, G., & Bartlett, M. (2013). Multiple Kernel Learning for Emotion Recognition in the Wild. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction (pp. 517-524). New York, NY: Association for Computing Machinery.
https://doi.org/10.1145/2522848.2531741

[43]   Stevens, R. H., Galloway, T., & Berka, C. (2007). EEG-Related Changes in Cognitive Workload, Engagement and Distraction as Students Acquire Problem Solving Skills. International Conference on User Modeling, Springer, Berlin, Heidelberg, 187-196.

[44]   Urbanowicz, R. J., Olson, R. S., Schmitt, P., Meeker, M., & Moore, J. H. (2018). Benchmarking Relief-Based Feature Selection Methods for Bioinformatics Data Mining. Journal of Biomedical Informatics, 85, 168-188.
https://doi.org/10.1016/j.jbi.2018.07.015

[45]   Yoon, S., Byun, S., Dey, S., & Jung, K. (2019). Speech Emotion Recognition Using Multi-Hop Attention Mechanism. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2822-2826). Piscataway, NJ: IEEE.
https://doi.org/10.1109/ICASSP.2019.8683483

[46]   Zaletelj, J., & Kosir, A. (2017). Predicting Students’ Attention in the Classroom from Kinect Facial and Body Features. EURASIP Journal on Image and Video Processing, 2017, Article No. 80.
https://doi.org/10.1186/s13640-017-0228-8

 
 
Top