Back
 JMP  Vol.11 No.9 , September 2020
Extended Relativistic Invariance, Quantization of the Kinetic Momentum
Abstract: The aim of this research is a better understanding of the quantization in physics. The true origin of the quantization is the existence of the quantized kinetic momentum of electrons, neutrinos, protons and neutrons with the value. It is a consequence of the extended relativistic invariance of the wave of fundamental particles with spin 1/2. This logical link is due to properties of the quantum waves of fermions, which are functions of space-time with value into the and End(Cl3) Lie groups. Space-time is a manifold forming the auto-adjoint part of . The Lagrangian densities are the real parts of the waves. The equivalence between the invariant form and the Dirac form of the wave equation takes the form of Lagrange's equations. The momentum-energy tensor linked by Noether's theorem to the invariance under space-time translations has components which are directly linked to the electromagnetic tensor. The invariance under of the kinetic momentum tensor gives eight vectors. One of these vectors has a time component with value . Resulting aspects of the standard model of quantum physics and of the relativistic theory of gravitation are discussed.
Cite this paper: Daviau, C. and Bertrand, J. (2020) Extended Relativistic Invariance, Quantization of the Kinetic Momentum. Journal of Modern Physics, 11, 1263-1278. doi: 10.4236/jmp.2020.119079.
References

[1]   de Broglie, L. (1924) Annales de la Fondation Louis de Broglie,17, 1.

[2]   Dirac, P.A.M. (1928) Proceedings of the Royal Society of London,117, 610-624.
https://doi.org/10.1098/rspa.1928.0023

[3]   Hestenes, D. (1992) Space-Time Algebra. Gordon and Breach, New York.

[4]   Hestenes, D. (1973) Journal of Mathematical Physics, 14, 893-905.
https://doi.org/10.1063/1.1666413

[5]   Hestenes, D. (1975) Journal of Mathematical Physics, 16, 556-572.
https://doi.org/10.1063/1.522554

[6]   Hestenes, D. (1982) Foundations of Physics, 12, 153-168.
https://doi.org/10.1007/BF00736846

[7]   Hestenes, D. (1986) A Unified Language for Mathematics and Physics. In: Chisholm, J.S.R. and Common, A.K., Eds., Clifford Algebras and Their Applications in Mathematical Physics, Reidel, Dordrecht, 1-23.
https://doi.org/10.1007/978-94-009-4728-3 1

[8]   Daviau, C. (1996) Dirac Equation in the Clifford Algebra of Space. In: Dietrich, V., Habetha, K. and Jank, G., Eds., Clifford Algebras and Their Application in Mathematical Physics. Fundamental Theories of Physics, Vol. 94, Springer, Boston, MA, 67-87.
https://doi.org/10.1007/978-94-011-5036-1 8

[9]   Daviau, C. (1997) Annales de la Fondation Louis de Broglie, 22, 87-103.

[10]   Daviau, C. (1998) Annales de la Fondation Louis de Broglie, 23, 27-37.

[11]   Daviau, C. (2011) L'espace-temps double. JePublie, Pouillé-les-Coteaux.

[12]   Daviau, C. (2012) Advances in Applied Clifford Algebras, 22, 611-623.
https://doi.org/10.1007/s00006-012-0351-7

[13]   Daviau, C. (2012) Double Space-Time and More. JePublie, Pouillé-les-Coteaux.

[14]   Daviau, C. (2012) Nonlinear Dirac Equation, Magnetic Monopoles and Double Space-Time. CISP, Cambridge, UK.

[15]   Daviau, C. (2013) Chap. 1. Invariant Quantum Wave Equations and Double Space-Time. In: Advances in Imaging and Electron Physics, Vol. 179, Elsevier, Amsterdam, 1-136. https://doi.org/10.1016/B978-0-12-407700-3.00001-6

[16]   Daviau, C. (2017) Advances in Applied Clifford Algebras, 27, 279-290.
https://doi.org/10.1007/s00006-015-0566-5

[17]   Daviau, C. (2015) Annales de la Fondation Louis de Broglie, 40,113-138.

[18]   Daviau, C. (2020) Dialogue pour une nouvelle physique. 2nd Edition, St Honoré, Paris.

[19]   Daviau, C. and Bertrand, J. (2013) Annales de la Fondation Louis de Broglie, 38, 57-81.

[20]   Daviau, C. and Bertrand, J. (2014) New Insights in the Standard Model of Quantum Physics in Clifford Algebra. Je Publie, Pouillé-les-Coteaux.

[21]   Daviau, C. and Bertrand, J. (2014) Journal of Modern Physics, 5, 1001-1022.
https://doi.org/10.4236/jmp.2014.511102

[22]   Daviau, C. and Bertrand, J. (2014) Journal of Modern Physics, 5, 2149-2173.
https://doi.org/10.4236/jmp.2014.518210

[23]   Daviau, C. and Bertrand, J. (2015) Annales de la Fondation Louis de Broglie, 40, 181-209.

[24]   Daviau, C. and Bertrand, J. (2015) Journal of Modern Physics, 6, 2080-2092.
https://doi.org/10.4236/jmp.2015.614215

[25]   Daviau, C. and Bertrand, J. (2015) Journal of Applied Mathematics and Physics, 3, 46-61.
https://doi.org/10.4236/jamp.2015.31007

[26]   Daviau, C. and Bertrand, J. (2015) Journal of Modern Physics, 6, 1647-1656.
https://doi.org/10.4236/jmp.2015.611166

[27]   Daviau, C. and Bertrand, J. (2016) Annales de la Fondation Louis de Broglie, 41, 73-97.

[28]   Daviau, C. and Bertrand, J. (2015) The Standard Model of Quantum Physics in Clifford Algebra. World Scientific, Singapore.
https://doi.org/10.1142/9780

[29]   Daviau, C. and Bertrand, J. (2016) Journal of Modern Physics, 7, 936-951.
https://doi.org/10.4236/jmp.2016.79086

[30]   Daviau, C. and Bertrand, J. (2018) Journal of Modern Physics, 9, 250-258.
https://doi.org/10.4236/jmp.2018.92017

[31]   Daviau, C. and Bertrand, J. (2019) Annales de la Fondation Louis de Broglie, 44, 163-186.

[32]   Daviau, C., Bertrand, J. and Ng, R. (2020) Journal of Modern Physics, 11, 1075-1090.
https://doi.org/10.4236/jmp.2020.117068

[33]   Daviau, C., Bertrand, J. and Girardot, D. (2016) Journal of Modern Physics, 7, 1568-1590.
https://doi.org/10.4236/jmp.2016.712143

[34]   Girardot, D., Daviau, C. and Bertrand, J. (2016) Journal of Modern Physics, 7, 2398-2417.

[35]   Daviau, C., Bertrand, J., Girardot, D. and Socroun, T. (2017) Annales de la Fondation Louis de Broglie, 42, 351-377.

[36]   Daviau, C., Bertrand, J., Socroun, T. and Girardot, D. (2019) Modèle Standard et Gravitation. Presses des Mines, Paris.

[37]   Daviau, C., Bertrand, J., Socroun, T. and Girardot, D. (2020) Developing a Theory of Everything. Annales de la Fondation Louis de Broglie, Paris.
http://ab.ensmp.fr/MEMOS/ToEAFLB.pdf

[38]   Lochak, G. (1983) Annales de la Fondation Louis de Broglie, 8, 345-370.

[39]   Lochak, G. (1984) Annales de la Fondation Louis de Broglie, 9, 5-30.

[40]   Lochak, G. (1985) International Journal of Theoretical Physics, 24, 1019-1050.
https://doi.org/10.1007/BF00670815

[41]   Lochak, G. (1995) Advanced Electromagnetism. In: Barrett, T.W. and Grimes, D.M., Eds., The Symmetry between Electricity and Magnetism and the Problem of the Existence of a Magnetic Monopole, World Scientific, Singapore, 105-147.
https://doi.org/10.1142/9789812831323 0004

[42]   Lochak, G. (2004) Annales de la Fondation Louis de Broglie, 29, 297-316.

[43]   Lochak, G. (2006) Annales de la Fondation Louis de Broglie, 31, 193-206.

[44]   Lochak, G. (2007) Annales de la Fondation Louis de Broglie, 32,125-136.

[45]   Lochak, G. (2010) Annales de la Fondation Louis de Broglie, 35, 1-18.

[46]   Krüger, H. (1991) New Solutions of the Dirac Equation for Central Fields. In: Hestenes, D. and Weingartshofer, A., Eds., The Electron. Fundamental Theories of Physics, Vol. 45, Springer, Dordrecht, 49-81.

[47]   Costa de Beauregard, O. (1989) Annales de la Fondation Louis de Broglie, 14, 335-342.

[48]   Love, A. and Bailin, D. (1986) Introduction to Gauge Field Theory. IOP, Bristol, USA.

[49]   de Broglie, L. (1934) L'électron magnétique. Hermann, Paris.

 
 
Top