[1] Aires, L. M. I., Pio, C. A., & Pereira, J. S. (2008). Carbon Dioxide Exchange above a Mediterranean C3/C4 Grassland during Two Climatologically Contrasting Years. Global Change Biology, 14, 539-555.
https://doi.org/10.1111/j.1365-2486.2007.01507.x
[2] Alfadhel, I., Ge, J., Sinan, Y., & Liu, Y. (2019). Methane Flux and Its Environmental Impact Factors in Dajiuhu Wetland of Shennongjia. Wuhan University Journal of Natural Sciences, 24, 455-460.
https://doi.org/10.1007/s11859-019-1421-7
[3] Alm, J., Talanov, A., Saarnio, S., Silvola, J., Ikkonen, E., Aaltonen, H., Nykänen, H., & Martikainen, P. J. (1997). Reconstruction of the Carbon Balance for Microsites in a Boreal Oligotrophic Pine Fen, Finland. Oecologia, 110, 423-431.
https://doi.org/10.1007/s004420050177
[4] Andersen, R., Poulin, M., Borcard, D., Laiho, R., Laine, J., Vasander, H., & Tuittila, E. T. (2011). Environmental Control and Spatial Structures in Peatland Vegetation. Journal of Vegetation Science, 22, 878-890.
https://doi.org/10.1111/j.1654-1103.2011.01295.x
[5] Bonneville, M. C., Strachan, I. B., Humphreys, E. R., & Roulet, N. T. (2008). Net Ecosystem CO2 Exchange in a Temperate Cattail Marsh in Relation to Biophysical Properties. Agricultural and Forest Meteorology, 148, 69-81.
https://doi.org/10.1016/j.agrformet.2007.09.004
[6] Chu, X., Han, G., Xing, Q., Xia, J., Sun, B., Li, X., Yu, J., Li, D., & Song, W. (2019). Changes in Plant Biomass Induced by Soil Moisture Variability Drive Interannual Variation in the Net Ecosystem CO2 Exchange over a Reclaimed Coastal Wetland. Agricultural and Forest Meteorology, 264, 138-148.
https://doi.org/10.1016/j.agrformet.2018.09.013
[7] Chu, X., Han, G., Xing, Q., Xia, J., Sun, B., Yu, J., & Li, D. (2018). Dual Effect of Precipitation Redistribution on Net Ecosystem CO2 Exchange of a Coastal Wetland in the Yellow River Delta. Agricultural and Forest Meteorology, 249, 286-296.
https://doi.org/10.1016/j.agrformet.2017.11.002
[8] Duman, T., & Schäfer, K. V. R. (2018). Partitioning Net Ecosystem Carbon Exchange of Native and Invasive Plant Communities by Vegetation Cover in an Urban Tidal Wetland in the New Jersey Meadowlands (USA). Ecological Engineering, 114, 16-24.
https://doi.org/10.1016/j.ecoleng.2017.08.031
[9] Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C. et al. (2001). Short Communication: Gap Filling Strategies for Long Term Energy Flux Data Sets. Agricultural and Forest Meteorology, 107, 71-77.
https://doi.org/10.1016/S0168-1923(00)00235-5
[10] Flanagan, L. L. B., Wever, L. L., & Carlson, P. J. P. (2002). Seasonal and Interannual Variation in Carbon Dioxide Exchange and Carbon Balance in a Northern Temperate Grassland. Global Change Biology, 8, 599-615.
https://doi.org/10.1046/j.1365-2486.2002.00491.x
[11] Han, G., Yang, L., Yu, J., Wang, G., Mao, P., & Gao, Y. (2013). Environmental Controls on Net Ecosystem CO2 Exchange over a Reed (Phragmites australis). Wetland in the Yellow River Delta, China. Estuaries and Coasts, 36, 401-413.
https://doi.org/10.1007/s12237-012-9572-1
[12] Hunt, J. E., Kelliher, F. M., McSeveny, T. M., Ross, D. J., & Whitehead, D. (2004). Long-Term Carbon Exchange in a Sparse, Seasonally Dry Tussock Grassland. Global Change Biology, 10, 1785-1800.
https://doi.org/10.1111/j.1365-2486.2004.00842.x
[13] Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M., & Peichl, M. (2018). Partitioning of the Net CO2 Exchange Using an Automated Chamber System Reveals Plant Phenology as Key Control of Production and Respiration Fluxes in a Boreal Peatland. Global Change Biology, 24, 3436-3451. https://doi.org/10.1111/gcb.14292
[14] Knapp, A. K. (1985). Effect of Fire and Drought on the Ecophysiology of Andropogon gerardii and Panicum virgatum in a Tallgrass Prairie. Ecology, 66, 1309-1320.
https://doi.org/10.2307/1939184
[15] Kuiper, J. J., Mooij, W. M., Bragazza, L., & Robroek, B. J. M. (2014). Plant Functional Types Define Magnitude of Drought Response in Peatland CO2 Exchange. Ecology, 95, 123-131. https://doi.org/10.1890/13-0270.1
[16] Lees, K. J., Quaife, T., Artz, R. R. E., Khomik, M., & Clark, J. M. (2018). Potential for Using Remote Sensing to Estimate Carbon Fluxes across Northern Peatlands—A Review. Science of the Total Environment, 615, 857-874.
https://doi.org/10.1016/j.scitotenv.2017.09.103
[17] Mamolos, A. P., Veresoglou, D. S., Noitsakis, V., & Gerakis, A. (2001). Differential Drought Tolerance of Five Coexisting Plant Species in Mediterranean Lowland Grasslands. Journal of Arid Environments, 49, 329-341.
https://doi.org/10.1006/jare.2001.0792
[18] Nagy, Z., Pintér, K., Czóbel, S., Balogh, J., Horváth, L., Fóti, S., Barcza, Z. et al. (2007). The Carbon Budget of Semi-Arid Grassland in a Wet and a Dry Year in Hungary. Agriculture, Ecosystems & Environment, 121, 21-29.
https://doi.org/10.1016/j.agee.2006.12.003
[19] Nakano, T., & Shinoda, M. (2018). Interannual Variation in Net Ecosystem CO2 Exchange and Its Climatic Controls in a Semiarid Grassland of Mongolia. Journal of Agricultural Meteorology, 71, 92-96.
https://doi.org/10.2480/agrmet.D-17-00035
[20] Nilsson, M., Sagerfors, J., Buffam, I., Laudon, H., Eriksson, T., Grelle, A. et al. (2008). Contemporary Carbon Accumulation in a Boreal Oligotrophic Minerogenic Mire—A Significant Sink after Accounting for All C-Fluxes. Global Change Biology, 14, 2317- 2332. https://doi.org/10.1111/j.1365-2486.2008.01654.x
[21] Niu, B., He, Y., Zhang, X., Du, M., Shi, P., Sun, W., & Zhang, L. (2017). CO2 Exchange in an Alpine Swamp Meadow on the Central Tibetan Plateau. Wetlands, 37, 525-543.
https://doi.org/10.1007/s13157-017-0888-2
[22] Novick, K. A., Stoy, P. C., Katul, G. G., Ellsworth, D. S., Siqueira, M. B. S., Juang, J., & Oren, R. (2004). Carbon Dioxide and Water Vapor Exchange in a Warm Temperate Grassland. Oecologia, 138, 259-274.
https://doi.org/10.1007/s00442-003-1388-z
[23] Ruimy, A., Jarvis, P. G., Baldocchi, D. D., & Saugier, B. (1995). CO2 Fluxes over Plant Canopies and Solar Radiation: A Review. Advances in Ecological Research, 26, 1-68.
https://doi.org/10.1016/S0065-2504(08)60063-X
[24] Schedlbauer, J. L., Oberbauer, S. F., Starr, G., & Jimenez, K. L. (2010). Agricultural and Forest Meteorology Seasonal Differences in the CO2 Exchange of a Short-Hydroperiod Florida Everglades Marsh. Agricultural and Forest Meteorology, 150, 994-1006.
https://doi.org/10.1016/j.agrformet.2010.03.005
[25] Suyker, A. E., Verma, S. B., & Burba, G. G. (2003). Interannual Variability in Net CO2 Exchange of a Native Tallgrass Prairie. Global Change Biology, 9, 255-265.
https://doi.org/10.1046/j.1365-2486.2003.00567.x
[26] Tramontana, G., Migliavacca, M., Jung, M., Reichstein, M., Keenan, T. F., Camps-Valls, G. et al. (2020). Partitioning Net Carbon Dioxide Fluxes into Photosynthesis and Respiration Using Neural Networks. Global Change Biology, 1-19.
https://doi.org/10.1111/gcb.15203
[27] Wang, M., Wu, J., Lafleur, P. M., Luan, J., Chen, H., & Zhu, X. (2018). Can Abandoned Peatland Pasture Sequestrate More Carbon Dioxide from the Atmosphere than an Adjacent Pristine Bog in Newfoundland, Canada? Agricultural and Forest Meteorology, 248, 91-108. https://doi.org/10.1016/j.agrformet.2017.09.010
[28] Ward, S. E., Ostle, N. J., McNamara, N. P., & Bardgett, R. D. (2010). Litter Evenness Influences Short-Term Peatland Decomposition Processes. Oecologia, 164, 511-520.
https://doi.org/10.1007/s00442-010-1636-y
[29] Webb, E. K., Pearman, G. I., & Leuning, R. (1980). Correction of Flux Measurements for Density Effects Due to Heat and Water Vapour Transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100.
https://doi.org/10.1002/qj.49710644707
[30] Wu, J., Wu, H., Ding, Y., Qin, J., Li, H., Liu, S., & Zeng, D. (2020). Interannual and Seasonal Variations in Carbon Exchanges over an Alpine Meadow in the Northeastern Edge of the Qinghai-Tibet Plateau, China. PLoS ONE, 15, e0228470.
https://doi.org/10.1371/journal.pone.0228470
[31] Zhao, L., Li, Y., Xu, S., Zhou, H., Gu, S., Yu, G., & Zhao, X. (2006). Diurnal, Seasonal and Annual Variation in Net Ecosystem CO2 Exchange of an Alpine Shrubland on Qinghai-Tibetan Plateau. Global Change Biology, 12, 1940-1953.
https://doi.org/10.1111/j.1365-2486.2006.01197.x
[32] Zhou, L., Zhou, G., & Jia, Q. (2009). Annual Cycle of CO2 Exchange over a Reed (Phragmites australis) Wetland in Northeast China. Aquatic Botany, 91, 91-98.
https://doi.org/10.1016/j.aquabot.2009.03.002