Back
 GEP  Vol.8 No.8 , August 2020
Net Ecosystem CO2 Flux and Effect Factors in Peatland Ecosystem of Central China
Abstract: Peatland ecosystems play an important role in the global carbon cycle because they act as a pool or sink for the carbon cycle. However, the relationship between seasonality effect factors and net ecosystem CO2 exchange (NEE) remains to be clarified, particularly for the non-growing season. Here, based on the eddy covariance technique, NEE in the peatland ecosystem of Central China was examined to measure two years’ (2016 and 2017) accumulation of carbon dioxide emissions with contrasting seasonal distribution of environmental factors. Our results demonstrate the cumulative net ecosystem CO2 emissions during the study period was in the first non-growing season 2.94 ± 4.83 μmolCO2 m-2.s-1 with the lowest values in the same year in first growing season was -2.79 ± 4.92 μmolCO2 m-2.s-1. The results indicate the effect of seasonal variations of NEE can be directly reflected in daily and seasonal variations in growth and respiration of peatland ecosystem by environmental parameters over different growing stages.
Cite this paper: Alfadhel, I. , Ge, J. and Issaka, S. (2020) Net Ecosystem CO2 Flux and Effect Factors in Peatland Ecosystem of Central China. Journal of Geoscience and Environment Protection, 8, 95-106. doi: 10.4236/gep.2020.88008.
References

[1]   Aires, L. M. I., Pio, C. A., & Pereira, J. S. (2008). Carbon Dioxide Exchange above a Mediterranean C3/C4 Grassland during Two Climatologically Contrasting Years. Global Change Biology, 14, 539-555.
https://doi.org/10.1111/j.1365-2486.2007.01507.x

[2]   Alfadhel, I., Ge, J., Sinan, Y., & Liu, Y. (2019). Methane Flux and Its Environmental Impact Factors in Dajiuhu Wetland of Shennongjia. Wuhan University Journal of Natural Sciences, 24, 455-460.
https://doi.org/10.1007/s11859-019-1421-7

[3]   Alm, J., Talanov, A., Saarnio, S., Silvola, J., Ikkonen, E., Aaltonen, H., Nykänen, H., & Martikainen, P. J. (1997). Reconstruction of the Carbon Balance for Microsites in a Boreal Oligotrophic Pine Fen, Finland. Oecologia, 110, 423-431.
https://doi.org/10.1007/s004420050177

[4]   Andersen, R., Poulin, M., Borcard, D., Laiho, R., Laine, J., Vasander, H., & Tuittila, E. T. (2011). Environmental Control and Spatial Structures in Peatland Vegetation. Journal of Vegetation Science, 22, 878-890.
https://doi.org/10.1111/j.1654-1103.2011.01295.x

[5]   Bonneville, M. C., Strachan, I. B., Humphreys, E. R., & Roulet, N. T. (2008). Net Ecosystem CO2 Exchange in a Temperate Cattail Marsh in Relation to Biophysical Properties. Agricultural and Forest Meteorology, 148, 69-81.
https://doi.org/10.1016/j.agrformet.2007.09.004

[6]   Chu, X., Han, G., Xing, Q., Xia, J., Sun, B., Li, X., Yu, J., Li, D., & Song, W. (2019). Changes in Plant Biomass Induced by Soil Moisture Variability Drive Interannual Variation in the Net Ecosystem CO2 Exchange over a Reclaimed Coastal Wetland. Agricultural and Forest Meteorology, 264, 138-148.
https://doi.org/10.1016/j.agrformet.2018.09.013

[7]   Chu, X., Han, G., Xing, Q., Xia, J., Sun, B., Yu, J., & Li, D. (2018). Dual Effect of Precipitation Redistribution on Net Ecosystem CO2 Exchange of a Coastal Wetland in the Yellow River Delta. Agricultural and Forest Meteorology, 249, 286-296.
https://doi.org/10.1016/j.agrformet.2017.11.002

[8]   Duman, T., & Schäfer, K. V. R. (2018). Partitioning Net Ecosystem Carbon Exchange of Native and Invasive Plant Communities by Vegetation Cover in an Urban Tidal Wetland in the New Jersey Meadowlands (USA). Ecological Engineering, 114, 16-24.
https://doi.org/10.1016/j.ecoleng.2017.08.031

[9]   Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C. et al. (2001). Short Communication: Gap Filling Strategies for Long Term Energy Flux Data Sets. Agricultural and Forest Meteorology, 107, 71-77.
https://doi.org/10.1016/S0168-1923(00)00235-5

[10]   Flanagan, L. L. B., Wever, L. L., & Carlson, P. J. P. (2002). Seasonal and Interannual Variation in Carbon Dioxide Exchange and Carbon Balance in a Northern Temperate Grassland. Global Change Biology, 8, 599-615.
https://doi.org/10.1046/j.1365-2486.2002.00491.x

[11]   Han, G., Yang, L., Yu, J., Wang, G., Mao, P., & Gao, Y. (2013). Environmental Controls on Net Ecosystem CO2 Exchange over a Reed (Phragmites australis). Wetland in the Yellow River Delta, China. Estuaries and Coasts, 36, 401-413.
https://doi.org/10.1007/s12237-012-9572-1

[12]   Hunt, J. E., Kelliher, F. M., McSeveny, T. M., Ross, D. J., & Whitehead, D. (2004). Long-Term Carbon Exchange in a Sparse, Seasonally Dry Tussock Grassland. Global Change Biology, 10, 1785-1800.
https://doi.org/10.1111/j.1365-2486.2004.00842.x

[13]   Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M., & Peichl, M. (2018). Partitioning of the Net CO2 Exchange Using an Automated Chamber System Reveals Plant Phenology as Key Control of Production and Respiration Fluxes in a Boreal Peatland. Global Change Biology, 24, 3436-3451. https://doi.org/10.1111/gcb.14292

[14]   Knapp, A. K. (1985). Effect of Fire and Drought on the Ecophysiology of Andropogon gerardii and Panicum virgatum in a Tallgrass Prairie. Ecology, 66, 1309-1320.
https://doi.org/10.2307/1939184

[15]   Kuiper, J. J., Mooij, W. M., Bragazza, L., & Robroek, B. J. M. (2014). Plant Functional Types Define Magnitude of Drought Response in Peatland CO2 Exchange. Ecology, 95, 123-131. https://doi.org/10.1890/13-0270.1

[16]   Lees, K. J., Quaife, T., Artz, R. R. E., Khomik, M., & Clark, J. M. (2018). Potential for Using Remote Sensing to Estimate Carbon Fluxes across Northern Peatlands—A Review. Science of the Total Environment, 615, 857-874.
https://doi.org/10.1016/j.scitotenv.2017.09.103

[17]   Mamolos, A. P., Veresoglou, D. S., Noitsakis, V., & Gerakis, A. (2001). Differential Drought Tolerance of Five Coexisting Plant Species in Mediterranean Lowland Grasslands. Journal of Arid Environments, 49, 329-341.
https://doi.org/10.1006/jare.2001.0792

[18]   Nagy, Z., Pintér, K., Czóbel, S., Balogh, J., Horváth, L., Fóti, S., Barcza, Z. et al. (2007). The Carbon Budget of Semi-Arid Grassland in a Wet and a Dry Year in Hungary. Agriculture, Ecosystems & Environment, 121, 21-29.
https://doi.org/10.1016/j.agee.2006.12.003

[19]   Nakano, T., & Shinoda, M. (2018). Interannual Variation in Net Ecosystem CO2 Exchange and Its Climatic Controls in a Semiarid Grassland of Mongolia. Journal of Agricultural Meteorology, 71, 92-96.
https://doi.org/10.2480/agrmet.D-17-00035

[20]   Nilsson, M., Sagerfors, J., Buffam, I., Laudon, H., Eriksson, T., Grelle, A. et al. (2008). Contemporary Carbon Accumulation in a Boreal Oligotrophic Minerogenic Mire—A Significant Sink after Accounting for All C-Fluxes. Global Change Biology, 14, 2317- 2332. https://doi.org/10.1111/j.1365-2486.2008.01654.x

[21]   Niu, B., He, Y., Zhang, X., Du, M., Shi, P., Sun, W., & Zhang, L. (2017). CO2 Exchange in an Alpine Swamp Meadow on the Central Tibetan Plateau. Wetlands, 37, 525-543.
https://doi.org/10.1007/s13157-017-0888-2

[22]   Novick, K. A., Stoy, P. C., Katul, G. G., Ellsworth, D. S., Siqueira, M. B. S., Juang, J., & Oren, R. (2004). Carbon Dioxide and Water Vapor Exchange in a Warm Temperate Grassland. Oecologia, 138, 259-274.
https://doi.org/10.1007/s00442-003-1388-z

[23]   Ruimy, A., Jarvis, P. G., Baldocchi, D. D., & Saugier, B. (1995). CO2 Fluxes over Plant Canopies and Solar Radiation: A Review. Advances in Ecological Research, 26, 1-68.
https://doi.org/10.1016/S0065-2504(08)60063-X

[24]   Schedlbauer, J. L., Oberbauer, S. F., Starr, G., & Jimenez, K. L. (2010). Agricultural and Forest Meteorology Seasonal Differences in the CO2 Exchange of a Short-Hydroperiod Florida Everglades Marsh. Agricultural and Forest Meteorology, 150, 994-1006.
https://doi.org/10.1016/j.agrformet.2010.03.005

[25]   Suyker, A. E., Verma, S. B., & Burba, G. G. (2003). Interannual Variability in Net CO2 Exchange of a Native Tallgrass Prairie. Global Change Biology, 9, 255-265.
https://doi.org/10.1046/j.1365-2486.2003.00567.x

[26]   Tramontana, G., Migliavacca, M., Jung, M., Reichstein, M., Keenan, T. F., Camps-Valls, G. et al. (2020). Partitioning Net Carbon Dioxide Fluxes into Photosynthesis and Respiration Using Neural Networks. Global Change Biology, 1-19.
https://doi.org/10.1111/gcb.15203

[27]   Wang, M., Wu, J., Lafleur, P. M., Luan, J., Chen, H., & Zhu, X. (2018). Can Abandoned Peatland Pasture Sequestrate More Carbon Dioxide from the Atmosphere than an Adjacent Pristine Bog in Newfoundland, Canada? Agricultural and Forest Meteorology, 248, 91-108. https://doi.org/10.1016/j.agrformet.2017.09.010

[28]   Ward, S. E., Ostle, N. J., McNamara, N. P., & Bardgett, R. D. (2010). Litter Evenness Influences Short-Term Peatland Decomposition Processes. Oecologia, 164, 511-520.
https://doi.org/10.1007/s00442-010-1636-y

[29]   Webb, E. K., Pearman, G. I., & Leuning, R. (1980). Correction of Flux Measurements for Density Effects Due to Heat and Water Vapour Transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100.
https://doi.org/10.1002/qj.49710644707

[30]   Wu, J., Wu, H., Ding, Y., Qin, J., Li, H., Liu, S., & Zeng, D. (2020). Interannual and Seasonal Variations in Carbon Exchanges over an Alpine Meadow in the Northeastern Edge of the Qinghai-Tibet Plateau, China. PLoS ONE, 15, e0228470.
https://doi.org/10.1371/journal.pone.0228470

[31]   Zhao, L., Li, Y., Xu, S., Zhou, H., Gu, S., Yu, G., & Zhao, X. (2006). Diurnal, Seasonal and Annual Variation in Net Ecosystem CO2 Exchange of an Alpine Shrubland on Qinghai-Tibetan Plateau. Global Change Biology, 12, 1940-1953.
https://doi.org/10.1111/j.1365-2486.2006.01197.x

[32]   Zhou, L., Zhou, G., & Jia, Q. (2009). Annual Cycle of CO2 Exchange over a Reed (Phragmites australis) Wetland in Northeast China. Aquatic Botany, 91, 91-98.
https://doi.org/10.1016/j.aquabot.2009.03.002

 
 
Top