JPEE  Vol.8 No.8 , August 2020
Hydropower Production Optimization from Inflow: Case Study of Songloulou Hydroplant
Abstract: The model of nonlinear power generation function is developed to generate optimal operational policies for Songloulou inflow in Cameroon and test these policies in real time conditions. Our model is used to adjust operational regimes for the Songloulou reservoir under varying flows (turbined and deversed) using a dynamic program. A more interesting approach, proposed in this article, consists of combining both the principle of decomposition by resources (or quantities) and the technique of dynamic programming. Dynamic programming is an appropriating optimization algorithm that is used for complex non-linear inflow operational policies and strategies. In this case study, our optimization model is used and confirmed maximizing large scale of hydropower in a period of time step by the integration of several. The high non linearity of our study object is the first stage of difficulty which brought us to combined least squared and Time Varying Acceleration Coefficients Particle Swarm (TVACPSO) to obtain appropriate production function which generated optimal operational policies for the Songloulou hydropower in sub-Saharan region and after we tested it in the company policies operational at real time conditions. The model could be successfully applied to other hydropower dams in the region.
Cite this paper: Wapet, D. , Essiane, S. , Wamkeue, R. and Gnetchejo, P. (2020) Hydropower Production Optimization from Inflow: Case Study of Songloulou Hydroplant. Journal of Power and Energy Engineering, 8, 37-52. doi: 10.4236/jpee.2020.88003.

[1]   Ruel, O.C. and Kamyogo, E.D. (2018) Environmental Law and Policy in Cameroon—Towards Making Africa the Tree of Life | Droit et politique de l’environne- ment au Cameroun—Afin de faire de l’Afrique l’arbre de vie. Nomos Verlagsgesellschaft Mbh. & Co., Baden.

[2]   Mbadjoun D.E., Wapet, S., Ndjakomo Essiane1, E. and Ntom Mentsouga, S. (2016) Perabi Ngoffe: Optimisation bi-objectif des centrales thermiques par une methode hybride incluant l'intelligence artificielle. Sciences, Technologies et Développement, Edition spéciale, 45-48.

[3]   Guy, H., Kouokam, D.S., Ndjakomo, E., Daniel, E. and Mbadjoun, W. (2016) Application de l’algorithme de la colonie de fourmis dans l’optimisation économique et environnementale d’une centrale thermique. Sciences, Technologies et Dévelop- pement, Edition spéciale, 65-69.

[4]   Ntom, E., Mentsouga, S., Ndjakomo Essiane, D.E. and Mbadjoun Wapet, S. (2016) Perabi Ngoffe: Dispatching economique et environnemental par une approche du reseau de neurones de hopfield combinee a la methode de dichotomie. Sciences, Technologies et Développement, Edition spéciale, 147-150.

[5]   Gnetchejo, P.J., Ndjakomo, S.E., Ele, P., Wamkeue, R., Wapet, D.M. and Perabi, S.P. (2019) Important Notes on Parameter Estimation of Solar Photovoltaic Cell. Energy Conversion and Management, 197, Article ID: 111870.

[6]   Gnetchejo, P.J., Ndjakomo, S.E., Ele, P., Wamkeue, R., Wapet, D.M. and Perabi, S.N. (2019) Enhanced Vibrating Particles System Algorithm for Parameters Estimation of Photovoltaic System. Journal of Power and Energy Engineering, 7, 1-26.

[7]   Gnetchejo, P.J., Ndjakomo, S.E., Ele, P., Wamkeue, R., Wapet, D.M. and Perabi, S.N. (2019) Reply to “Comment on Important Notes on Parameter Estimation of Solar Photovoltaic Cell” [Energy Convers. Manage. 2019;197:111870] by Patrick Juvet Gnetchejo et al. Energy Conversion and Management, 201.

[8]   Beluco, A., Souza, P. and Krenzinger, A. (2013) Influence of Different Degrees of Complementarity of Solar and Hydro Energy Availability on the Performance of Hybrid Hydro PV Generating Plants. Energy and Power Engineering, 5, 332-342.

[9]   Matmurodov, F., Sobirov, B., Tulanov, I., Mirzaabdullayev, J., Khakimov, J. and Daminov, O. (2019) Mathematical Modeling of The Transfer of Energy forces from the Engine through Hydro Transmission and Hydro Differential to Executive Bodies. World Journal of Mechanics, 9, 105-112.

[10]   Chang, W.P. (2010) A Novel Particle Swarm Optimization for Optimal Scheduling of Hydrothermal System. Energy and Power Engineering, 2, 223-229.

[11]   Al-Bahadly, I. (2018) An Integrated Wind and Hydro Power System Using Switched Reluctance Generator. Journal of Power and Energy Engineering, 6, 1-19.

[12]   Hidalgo, I.G., Fontane, D.G., Arabi, M., Lopes, J.E.G. and Andrade, J.G.P. (2012) Evaluation of Optimization Algorithms to Adjust Efficiency Curves for Hydroelectric Generating Units. Journal of Energy Engineering, 138, 172-178.

[13]   Sandor, B.I. and Susan-Resiga, R. (2012) Numerical Model for Cavitational Flow in Hydraulic Poet Valves. Modelling and Simulation in Engineering, 2012, Article ID: 742162.

[14]   Nazari-Heris, M., Mohammadi-Ivatloo, B. and Gharehpetian, G.B. (2017) Short-Term Scheduling of Hydro-Based Power Plants Considering Alication of Heuristic Algorithms: A Comprehensive Review. Renewable and Sustainable Energy Reviews, 74, 116-129.

[15]   Diniz, A., Esteves, P.P. and Sagastizábal, C.A. (2007) A Mathematical Model for Efficiency Curves of Hydroelectric Units. 2007 IEEE Power Engineering Society General Meeting, 24-28 June 2007, Tampa, FL, 1-7.

[16]   Mahor, A. and Rangnekar, S. (2009) Mathematical Modelling of Omkareshwor Hydro-Electric Plant at Narmada River. Hydro Nepal: Journal of Water, Energy and Environment, 3, 48-52.

[17]   Horváth, K., Van Esch, B., Vreeken, D., Pothof, I. and Baayen, J. (2019) Convex Modeling of Pumps in Order to Optimize Their Energy Use. Water Resources Research, 55, 2432-2445.

[18]   Diniz, A.L., Xavier, L.L. and Costa, F.S. (2007) Modelagem da função de produção energética das usinas hidroelétricas nos modelos de otimização do planejamento a curto prazo e da programação do despacho de sistemas hidrotérmicos interligados. Cadernos do IME—Série Estatística, 23, 1-15.

[19]   Elbatran, A.H., Abdel-Hamed, M.W., Yaakob, O.B., Ahmed, Y.M. and Ismail, M.A. (2015) Hydro Power and Turbine Systems Reviews. Jurnal Teknologi, 74, 83-90.

[20]   Parvez, I., Shen, J.J., Khan, M. and Cheng, C. (2019) Modeling and Solution Techniques Used for Hydrogeneration Scheduling. Water, 11, Article ID: 11392.

[21]   Margonis, P. (2017) Modeling and Optimization of a Hydroelectric Power Plant for a National Grid Power System Suly. Case Study: Stratos Hydroelectric Dam. Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece.

[22]   Hildago, I., Soares, F.S., Fontane, D., Lopes, J.E., Cicigna, M. and Silva, F.D. (2012) Analysis of the Level-Release Polynomial from a Hydroelectric Plant. Systemics, Cybernetics and Informatics, 10, 62-65.

[23]   Wamba, J.T. (2013) Modélisation and implémentation numérique du simulateur analogique de la centrale Hydro-Québec. Université du Québec en Abitibi-Témis- camingue, Québec.

[24]   Jordehi, A.R. (2016) Time Varying Acceleration Coefficients Particle Swarm Optimisation (Tvacpso): A New Optimisation Algorithm for Estimating Parameters of PV Cells and Modules. Energy Conversion and Management, 129, 262-274.

[25]   Séguin, S. (2016) Optimisation stochastique de la répartition spatio-temporelle d’un volume d’eau aux groupes turbo—alternateurs d’un système de production hydro- électrique, Montréal: Département de Mathématiques et de Génie Industriel, Ecole Polytechnique de Montréal. Université de Montréal, Montréal.

[26]   Arvidsen, H.I. (2019) Hydropower Production Scheduling Using Stochastic Dual Dynamic Programming Subject to Environmental Constraints. Master Thesis, Electrical Department, Norway.

[27]   Hammadia, A. (2000) Contribution à l’optimisation, en temps reel et à court terme, des des ressources hydroélectriques d’une rivière, thèse en Mathématiques de l’ingé- nieur, Canada.

[28]   Séguin, S., Audet, C. and Côté, P. (2017) Scenariotree Modeling for Stochastic Short- Term Hydropower Operations Planning. Journal of Water Resources Planning and Management, 143, 112.

[29]   Séguin, S., Fleten, S.E., Côté, P., Pichler, A. and Audet, C. (2017) Stochastic Short- Term Hydropower Planning with Inflow Scenario Trees. European Journal of Operational Research, 259, 1156-1168.