Back
 AJPS  Vol.11 No.8 , August 2020
Stem Population and Tissue Replacement of Urochloa in Different Phenological Stages
Abstract: The objective of the present investigation was to evaluate the Urochloa Insurgent, Piata and Signal grasses by varying the phenology in the attributes: stem population dynamics, tissue replacement, leaf:stem relation and weight per stem. The data were analyzed using a completely randomized block design with arrangement in divided plots and four replications, the procedure used was PROC GLM from SAS. The Signal grass presented higher stem density with an average of 450 m?2 stems, while the meadow with Insurgent grass registered the lowest stem density throughout the investigation, with an average of 320 m-2 stems; furthermore, in this treatment, the stem density tended to increase slowly over time (P = 0.05). The Insurgente and signal grasses showed rapid leaf elongation from day 21 of regrowth with 123 and 104 cm stem?1, while in Piata the accelerated leaf elongation was on day 14 with 113 cm stem?1 where it remained active its growth until day 56 (P > 0.05). As the regrowth age was increasing, the population dynamics of stems and weight per stem were increasing; in Insurgent and signal the leaf elongation and net growth increased to a maximum point to start declining; however, in Piata grass was increasing without decreasing. The trend of the leaf:stem relation was decreasing as the test progressed and senescence increased from day 21 of regrowth.
Cite this paper: Maldonado Peralta, M. , Rojas García, A. , Ruíz Clavel, J. , Aniano Aguirre, H. , Magadan Olmedo, F. , Jorge Castañeda, L. and Mondragón Calderón, U. (2020) Stem Population and Tissue Replacement of Urochloa in Different Phenological Stages. American Journal of Plant Sciences, 11, 1296-1306. doi: 10.4236/ajps.2020.118092.
References

[1]   Coppock, D.L. (1993) Grass Hay and Acacia Fruits: A Local Feeding System for Improved Calf Performance in Semi-Arid Ethiopia. Tropical Animal Health and Production, 25, 41-49.
https://link.springer.com/article/10.1007%2FBF02236885
https://doi.org/10.1007/BF02236885

[2]   Quiroz-Cardoso, F.S., Rojas-Hernández, J., Olivarez-Pérez, E., Hernández-Castro, R., Jiménez-Guillén, A., Córdova-Izquierdo, A., Villa-Mancera and Abdel-Fattah, S. (2015) Composición nutrional, consumo e índice de palatabilidad relativa de los frutos de tres acacias en la alimentación de ovejas y cabras. Archivos de Medicina Veterinaria, 47, 33-38.
https://scielo.conicyt.cl/pdf/amv/v47n1/art07.pdf
https://doi.org/10.4067/S0301-732X2015000100007

[3]   Bellon. M.R., Dulloo, E., Sardos, J., Thormann, I. and Burdon, J.J. (2017) In Situ Conservation—Harnessing Natural and Human-Derived Evolutionary Forces to Ensure Future Crop Adaptation. Evolutionary Applications, 10, 965-977.
https://www.ncbi.nlm.nih.gov/pubmed/29151853
https://doi.org/10.1111/eva.12521


[4]   Dempewolf, H., Baute, G., Anderson, J., Kilian, B., Smith, C. and Guarino, L. (2017) Past and Future Use of Wild Relatives in Crop Breeding. Crop Science, 57, 1070-1082.
https://pdfs.semanticscholar.org/2445/8157c75cacfbe368bd5312887964ce
0504eb.pdf?_ga=2.166320318.1819467295.1585283016-442843266.1580407853
https://doi.org/10.2135/cropsci2016.10.0885

[5]   Brummitt, N.A., Bachman, S.P., Griffiths-Lee, J., Lutz, M., Moat, J.F. and Farjon, A. (2015) Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants. PLoS ONE, 10, 135-152.
https://doi.org/10.1371/journal.pone.0135152

[6]   Dempewolf, H., Eastwood, R.J., Guarino, L., Khoury, C.K., Müller, J.V. and Toll, J. (2014) Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecology and Sustainable Food Systems, 38, 369-377.
https://www.tandfonline.com/doi/full/10.1080/21683565.2013.870629
https://doi.org/10.1080/21683565.2013.870629


[7]   Miller, R.E. and Khoury, C.K. (2018) The Gene Pool Concept Applied to Crop Wild Relatives: An Evolutionary Perspective. In: Greene, S.L., et al., Eds., North American Crop Wild Relatives, Vol. 1, Springer, Cham, 167-188.
https://cgspace.cgiar.org/bitstream/handle/10568/99185/Miller_
genepool_2018_12_12.pdf?sequence=3&isAllowed=y
https://doi.org/10.1007/978-3-319-95101-0_6

[8]   Thornton, P. (2010) Livestock Production: Recent Trends, Future Prospects. Philosophical Transactions of the Royal Biological Sciences Society, 365, 2853-2867.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935116/pdf/rstb20100134.pdf

[9]   Brighenti, A.M., Sobrinho, F.S., Costa, T.R., Rocha, W.S.D., Martin, C.E. and Ferreira, L.H.C. (2008) Integracao Lavoura-Pecuária: A Cultura do Girassol Consorciada com Brachiaria Ruzizienses. Embrapa Gado de Leite, Juiz de Fora, MG (Embrapa Gado de Leite. Circular Técnica, 96), 1-12.
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/65291/1/
CT-96-Integracao-lavoura-pecuaria.pdf

[10]   Nguku, A.A., Musimba, N.K.R., Njarui, D.N. and Mwobobia, R.M. (2016) Thechemical Composition and Nutritive Value of Brachiaria Grass Cultivars at Katumancry Landre Search Station in South Eastern Kenya. Journal of Advances in Agriculture, 5, 706-717.
https://doi.org/10.24297/jaa.v5i2.5085

[11]   De Pinho Costa, K.A., Beneval, R., De Oliveira, I.P., Pettersen, C.D. and e Silva, E.D.C. (2005) Efeito da estacionalidade na producao de matéria seca e composicao bromatológica da Brachiaria brizantha cv. Marandu. Ciência Animal Brasileira, 6, 187-193.
https://www.revistas.ufg.br/vet/article/view/365/340

[12]   Hernández, G.A., Martínez, H.P.A., Mena, U.M., Pérez, P.J. and Quiroz, J.F.E. (2002) Dinámica del rebrote en pasto Insurgente (Brachiaria brizantha Hochst. Stapf.) pastoreado a diferente asignación en la estación de lluvias. Técnica Pecuaria en México, 40, 193-205.
https://www.redalyc.org/pdf/613/61340209.pdf

[13]   Hernández-Garay, A., Matthew, C. and Hodgson, J. (1999) Tiller Size/Density Compensation in Perennial Ryegrass Miniatures Wards Subject to Differing Defoliation Heights and a Proposed Productivity Index. Grass and Forage Science, 54, 347-356.
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2494.1999.00187.x
https://doi.org/10.1046/j.1365-2494.1999.00187.x

[14]   Hirata, M. and Pakiding, W. (2004) Tiller Dynamics in Bahia Grass (Paspalum notatum): Ananalysis of Responses to Nitrogen Fertilizer Rate, Defoliation Intensity and Season. Tropical Grasslands, 38, 100-111.
http://tropicalgrasslands.info/public/journals/4/Historic/Tropical%20
Grasslands%20Journal%20archive/PDFs/Vol_38_2004/Vol_38_02_2004_pp100_111.pdf


[15]   Cruz, H.A., Hernández, G.A., Enríquez, Q.J.F., Gómez, V.A., Ortega, J.E. and Maldonado, G.N.M. (2011) Producción de forraje y composición morfológica del pasto Mulato (Brachiaria híbrido 36061) sometido a diferentes regímenes de pastoreo. Revista Mexicana de Ciencias Pecuarias, 2, 429-443.
http://www.scielo.org.mx/pdf/rmcp/v2n4/v2n4a7.pdf

[16]   Rojas-García, A.R., Torres-Salado, N., Maldonado-Peralta, M.A., Sánchez-Santillán, P., García-Balbuena, A., Mendoza-Pedroza, S.I., álvarez-Vázquez, P., Herrera-Pérez, J. and Hernández-Garay, A. (2018) Curva de crecimiento y calidad de pasto cobra (Brachiaria HIBRIDO BR02/1794) a dos intensidades de corte. Agroproductividad, 11, 24-28.
https://revista-agroproductividad.org/index.php/agroproductividad/%20article/view/368/256

[17]   Matthew, C., Hernández-Garay, A. and Hodgson, J. (1996) Making Sense of the Link between Tiller Density and Pasture Production. Proceedings of the New Zealand Grassland Association, 57, 83-87.
https://www.grassland.org.nz/publications/nzgrassland_publication_708.pdf
https://doi.org/10.33584/jnzg.1995.57.2190


[18]   Alves, M.G., De Pinho, C.K.A., Da Costa, S.E., Soares, E.P., Flávio, N.J., Goncalves, R.M., Bezerra, F.P., Guimaraes, S.J.F. and Gomes, G.W. (2014) Yield and Chemical Composition of Brachiaria Forage Grasses in the Offseason after Corn Harvest. American Journal of Plant Sciences, 5, 933-941.
https://file.scirp.org/pdf/AJPS_2014032610050581.pdf
https://doi.org/10.4236/ajps.2014.57106

[19]   Silva, M.L.O., Faria, M.A., Morais, A.R., Andrade, G.P. and Lima, E.M.C. (2007) Crescimento e Produtividade do Girassol Cultivado na Entressa fracom Diferentes Laminas de água. Revista Brasileira de Engenharia Agrícola e Ambiental, 11, 482-488.
http://www.scielo.br/pdf/rbeaa/v11n5/v11n05a06.pdf
https://doi.org/10.1590/S1415-43662007000500006


[20]   García, E. (2004) Modificaciones al Sistema de Clasificación Climática de Koppen. 4th Editon, Universidad Nacional Autónoma de México, México, 217.

[21]   Castro, R.R., Hernández-Garay, A., Ramírez, R.O., Aguilar, B.G., Enríquez, Q.J.F. and Mendoza, P.S.I. (2013) Crecimiento en longitud foliar y dinámica de población de tallos de cinco asociaciones de gramíneas y leguminosa bajo pastoreo. Revista Mexicana de Ciencias Pecuarias, 4, 201-215.
http://www.scielo.org.mx/pdf/rmcp/v4n2/v4n2a6.pdf

[22]   SAS (2011) The SAS 9.2 for Windows. SAS Institute Inc., Cary.

[23]   Rojas, G.A.R., Ventura, R.J., Hernández, G.A., Joaquín, C.S., Maldonado, P.M.A. and Reyes, V.I. (2017) Dinámica poblacional de tallos de ovillo (Dactylis glomerata L.) solo y asociado con ballico perenne (Lolium perenne L.) y trébolblanco (Trifolium repens L.). Revista Mexicana de Ciencias Pecuarias, 49, 35-49.
http://www.scielo.org.mx/pdf/rmcp/v8n4/2448-6698-rmcp-8-04-00419.pdf
https://doi.org/10.22319/rmcp.v8i4.4646


[24]   Rueda, J.A., Ortega, J.E., Enríquez-Quiroz, J.F., Palacios-Torres, R.E. and Ramírez-Ordones, S. (2018) Tiller Population Dynamics in Eight Cultivars of Elephant Grass during Undisturbed Growth. African Journal of Range & Forage Science, 35, 1-11.
https://doi.org/10.2989/10220119.2018.1477832

[25]   Rodolfo, G.R., Schmitt, D., Dias, M.K. and Sbrissia, A.F. (2015) Levels of Defoliation and Regrowth Dynamics in Elephant Grass Swards. Ciência Rural, Santa Maria, 45, 1299-1304.
http://www.scielo.br/pdf/cr/v45n7/1678-4596-cr-0103_8478cr20141094.pdf
https://doi.org/10.1590/0103-8478cr20141094


[26]   Ramírez, R.O., Flores, I.A. Hernández, C.E., Rojas, G.A.R., Maldonado, P.M.á. and Valenzuela, L.J.L. (2020) Dinámica poblacional de tallos e índice de estabilidad del pasto llanero (Andropogon gayanus Kunt). Revista Mexicana de Ciencias Agricolas, 24, 23-34.
https://doi.org/10.29312/remexca.v0i24.2355

[27]   Maldonado, P.M.A., Rojas, G.A.R., Sánchez, S.P., Bottini, L.M.B., Torres, S.N., Ventura, R.J., Joaquín, C.S. and Luna, G.M.J. (2019) Análisis de crecimiento del pasto Cuba OM-22 (Pennisetum purpureum x Pennisetum glaucum) en el trópico seco. Agroproductividad, 12, 17-22.
https://doi.org/10.32854/agrop.v0i0.1445

[28]   Wilson, G.C.Y., Zavaleta, M.H.A., López, D.H. and Hernández, G.A. (2008) La citoquinina BAP retrasa la senescencia, aumenta antioxidantes, proteína y crecimiento en el pasto ovillo (Dactylis glomerata L.). Agrociencia, 42, 799-806.
https://www.redalyc.org/articulo.oa?id=30211207006

[29]   Taiz, L. and Zeiger, E. (2002) Plant Physiology. 3rd Edition, Sinauer Associates, Inc., Massachusetts, 690.

[30]   Ramírez, R.O., Hernández, G.A., Carneiro, D.C., Pérez, P.J., Enríquez, Q.J.F., Quero, C.A.R., Herrera, H.J.G. and Cervantes, N.A. (2009) Acumulación de forraje, crecimiento y características estructurales del pasto Mombaza (Panicum máximum Jacq.) cosechado a diferentes intervalos de corte. Técnica Pecuaria en México, 47, 203-213.
https://www.redalyc.org/articulo.oa?id=61312116008

 
 
Top