[1] Plastino, A. and Rocca, M.C. (2018) Quantum Field Theory,
Feynman-, Wheeler Propagators, Dimensional Regularization in Configuration Space and Convolution of Lorentz Invariant Tem pered Distributions. Journal of Physics Communications, 2, Ar ticle ID: 115029.
https://doi.org/10.1088/2399-6528/aaf186
[2] Bollini, C.G., Escobar, T. and Rocca, M.C. (1999) Convolution of Ultradistributions and Field Theory. International Journal of Theoretical Physics, 38, 2315-2332.
https://doi.org/10.1023/A:1026623718239
[3] Bollini, C.G. and Rocca, M.C. (2004) Convolution of Lorentz In variant Ultradistributions and Field Theory. International Jour nal of Theoretical Physics, 43, 1019-1051.
https://doi.org/10.1023/B:IJTP.0000048599.21501.93
[4] Bollini, C.G. and Rocca, M.C. (2004) Convolution of n Dimensional Tempered Ultradistributions and Field Theory. In ternational Journal of Theoretical Physics, 43, 59-76.
https://doi.org/10.1023/B:IJTP.0000028850.35090.24
[5] Bollini, C.G., Marchiano, P. and Rocca, M.C. (2007) Convolution of Ultradistributions, Field Theory, Lorentz Invariance and Res onances. International Journal of Theoretical Physics, 46, 3030-3059.
https://doi.org/10.1007/s10773-007-9418-y
[6] Plastino, A. and Rocca, M.C. (2020) Non-Relativistic Quantum Field Theory of Verlindes Emergent Entropic Gravity. Annals of Physics, 412, Article ID: 168013.
https://doi.org/10.1016/j.aop.2019.168013
[7] Sebastiao e Silva, J. (1958) Les fonctions analytiques comme ultra-distributions dans le calcul oprationnel. Mathematische An nalen, 136, 38-96.
https://doi.org/10.1007/BF01350287
[8] Schwartz, L. (1966) Th′eorie des distributions. Hermann, Paris.
[9] Bollini, C.G. and Giambiagi, J.J. (1972) Lowest Order “Diver gent” Graphs in v-Dimensional Space. Physics Letters B, 40, 566-568.
https://doi.org/10.1016/0370-2693(72)90483-2
[10] Bollini, C.G. and Giambiagi, J.J. (1972) Dimensional Renorinal ization: The Number of Dimensions as a Regularizing Parameter. Il Nuovo Cimento B, 12, 20-26.
[11] Bollini, C.G. and Giambiagi, J.J. (1996) Dimensional Regulariza tion in Configuration Space. Physical Review D, 53, 5761.
https://doi.org/10.1103/PhysRevD.53.5761
[12] Plastino, A. and Rocca, M.C. (2020) Gupta-Feynman based
Quantum Field Theory of Einstein’s Gravity. Journal of Physics Communications, 4, Article ID: 035014.
https://doi.org/10.1088/2399-6528/ab8178
[13] Plastino, A. and Rocca, M.C. (2020) Quantization of Newtons Gravity. Journal of Modern Physics, 11, 920-927.
https://doi.org/10.4236/jmp.2020.116056
[14] Zamora, D.J., Rocca, M.C., Plastino, A. and Ferri, G.L. (2018) Dimensionally Regularized Boltzmann-Gibbs Statistical Mechan ics and Two-Body Newtons Gravitation. Physica A: Statistical Mechanics and Its Applications, 503, 793-799.
https://doi.org/10.1016/j.physa.2018.03.019
[15] Zamora, D.J., Rocca, M.C., Plastino, A. and Ferri, G.L. (2018) Dimensionally Regularized Tsallis Statistical Mechanics and Two-Body Newtons Gravitation. Physica A: Statistical Mechan ics and Its Applications, 497, 310-318.
https://doi.org/10.1016/j.physa.2018.01.018
[16] Gel’fand, I.M. and Shilov, G.E. (1964) Generalized Functions, Vol. 1. Academic Press, Cambridge, MA.
[17] Gradshteyn, I.S. and Ryzhik, I.M. (1980) Table of Integrals, Se ries and Products. Academic Press, Cambridge, MA.