Back
 OJD  Vol.9 No.3 , August 2020
The Neurophysiological Substrate of the Decision-Making Process in Depressed Patients
Abstract: Background: The neural circuits involved in the decision-making process and social emotion participate in the same circuits seen in major depressive disorder. This study aimed to investigate in depressed patients, the decision making process in risk/reward situations using neurophysiological methods for a better assessment of functional aspects related to decision making deficit that are seen in major depression. Methods: Forty patients were studied, 20 with depression and 20 without. After applied the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and Hamilton Depression scale (HAM-D), the Iowa Gambling Task (IGT) was applied to analyze the risk/ reward decision-making behavior. The Skin Conductance Response (SCR) was recorded to analyze the emotional anticipatory learning effect during the IGT. Besides, an EEG was recorded to measure the Frontal Alpha Asymmetry Index (FAAI). Results: Depressed patients presented a lower Net score and a deficit in anticipatory learning effect in the IGT. Furthermore, the FAAI revealed more frontal right activation as have described in previous studies. Conclusion: Patients with major depression have a dysfunction in the circuits that modulate cognitive, emotional and social behavior, and also, impairment in cognitive fluidity for evaluating strategies for risk-reward. The EEG helps to confirm that asymmetry in frontal areas and oscillation of alpha frequencies participate in the regulation of emotion in depressed patients.
Cite this paper: Laurentino, S. , de Souza, S. and Sougey, E. (2020) The Neurophysiological Substrate of the Decision-Making Process in Depressed Patients. Open Journal of Depression, 9, 43-57. doi: 10.4236/ojd.2020.93005.
References

[1]   Allen, J. J., & Kline, J. P. (2004). Frontal EEG Asymmetry, Emotion, and Psychopathology: The First, and the Next 25 Years. Biological Psychology, 67, 1-5.
https://doi.org/10.1016/j.biopsycho.2004.03.001

[2]   Barger, S. D., Messerli-Burgy, N., & Barth, J. (2014). Social Relationship Correlates of Major Depressive Disorder and Depressive Symptoms in Switzerland: Nationally Representative cross Sectional Study. BMC Public Health, 14, Article No. 273.
https://doi.org/10.1186/1471-2458-14-273

[3]   Bechara, A., & Van Der Linden, M. (2005). Decision-Making and Impulse Control after Frontal Lobe Injuries. Current Opinion in Neurology, 18, 734-739.
https://doi.org/10.1097/01.wco.0000194141.56429.3c

[4]   Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (2005). The Iowa Gambling Task and the Somatic Marker Hypothesis: Some Questions and Answers. Trends in Cognitive Sciences, 9, 159-162; Discussion 162-154.
https://doi.org/10.1016/j.tics.2005.02.002

[5]   Bechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the Decision-Making Deficit of Patients with Ventromedial Prefrontal Cortex Lesions. Brain, 123, 2189-2202.
https://doi.org/10.1093/brain/123.11.2189

[6]   Beitz, K. M., Salthouse, T. A., & Davis, H. P. (2014). Performance on the Iowa Gambling Task: From 5 to 89 Years of Age. Journal of Experimental Psychology: General, 143, 1677-1689. https://doi.org/10.1037/a0035823

[7]   Bollon, T., & Bagneux, V. (2013). Can the Uncertainty Appraisal Associated with Emotion Cancel the Effect of the Hunch Period in the Iowa Gambling Task? Cognition and Emotion, 27, 376-384. https://doi.org/10.1080/02699931.2012.712947

[8]   Coan, J. A., Allen, J. J., & McKnight, P. E. (2006). A Capability Model of Individual Differences in Frontal EEG Asymmetry. Biological Psychology, 72, 198-207.
https://doi.org/10.1016/j.biopsycho.2005.10.003

[9]   Costello, E. J. (1983). Information Processing for Decision Making in Depressed Women. A Study of Subjective Expected Utilities. Journal of Affective Disorders, 5, 239-251.
https://doi.org/10.1016/0165-0327(83)90047-2

[10]   Cotrena, C., Branco, L. D., Zimmermann, N., Cardoso, C. O., Grassi-Oliveira, R., & Fonseca, R. P. (2014). Impaired Decision-Making after Traumatic Brain Injury: The Iowa Gambling Task. Brain Injury, 28, 1070-1075. https://doi.org/10.3109/02699052.2014.896943

[11]   Cui, J. F., Chen, Y. H., Wang, Y., Shum, D. H., & Chan, R. C. (2013). Neural Correlates of Uncertain Decision Making: ERP Evidence from the Iowa Gambling Task. Frontiers in Human Neuroscience, 7, 776. https://doi.org/10.3389/fnhum.2013.00776

[12]   Cusi, A. M., Nazarov, A., Holshausen, K., Macqueen, G. M., & McKinnon, M. C. (2012). Systematic Review of the Neural Basis of Social Cognition in Patients with Mood Disorders. Journal of Psychiatry & Neuroscience, 37, 154-169.

[13]   Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The Return of Phineas Gage: Clues about the Brain from the Skull of a Famous Patient. Science, 264, 1102-1105. https://doi.org/10.1126/science.8178168

[14]   Davidson, R. J. (1992). Anterior Cerebral Asymmetry and the Nature of Emotion. Brain and Cognition, 20, 125-151. https://doi.org/10.1016/0278-2626(92)90065-T

[15]   Davidson, R. J. (1998). Anterior Electrophysiological Asymmetries, Emotion, and Depression: Conceptual and Methodological Conundrums. Psychophysiology, 35, 607-614.
https://doi.org/10.1017/S0048577298000134

[16]   Davidson, R. J., Chapman, J. P., Chapman, L. J., & Henriques, J. B. (1990). Asymmetrical Brain Electrical Activity Discriminates between Psychometrically-Matched Verbal and Spatial Cognitive Tasks. Psychophysiology, 27, 528-543.
https://doi.org/10.1111/j.1469-8986.1990.tb01970.x

[17]   Denburg, N. L., Tranel, D., & Bechara, A. (2005). The Ability to Decide Advantageously Declines Prematurely in Some Normal Older Persons. Neuropsychologia, 43, 1099-1106.
https://doi.org/10.1016/j.neuropsychologia.2004.09.012

[18]   Drevets, W. C. (1999). Prefrontal Cortical-Amygdalar Metabolism in Major Depression. Annals of the New York Academy of Sciences, 877, 614-637.
https://doi.org/10.1111/j.1749-6632.1999.tb09292.x

[19]   Drevets, W. C. (2001). Neuroimaging and Neuropathological Studies of Depression: Implications for the Cognitive-Emotional Features of Mood Disorders. Current Opinion in Neurobiology, 11, 240-249. https://doi.org/10.1016/S0959-4388(00)00203-8

[20]   Drevets, W. C. (2003). Neuroimaging Abnormalities in the Amygdala in Mood Disorders. Annals of the New York Academy of Sciences, 985, 420-444.
https://doi.org/10.1111/j.1749-6632.2003.tb07098.x

[21]   Drevets, W. C. (2007). Orbitofrontal Cortex Function and Structure in Depression. Annals of the New York Academy of Sciences, 1121, 499-527.
https://doi.org/10.1196/annals.1401.029

[22]   Drevets, W. C., & Raichle, M. E. (1992). Neuroanatomical Circuits in Depression: Implications for Treatment Mechanisms. Psychopharmacology Bulletin, 28, 261-274.

[23]   Drevets, W. C., Bogers, W., & Raichle, M. E. (2002). Functional Anatomical Correlates of Antidepressant Drug Treatment Assessed Using PET Measures of Regional Glucose Metabolism. European Neuropsychopharmacology, 12, 527-544.
https://doi.org/10.1016/S0924-977X(02)00102-5

[24]   Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain Structural and Functional Abnormalities in Mood Disorders: Implications for Neurocircuitry Models of Depression. Brain Structure & Function, 213, 93-118. https://doi.org/10.1007/s00429-008-0189-x

[25]   Drevets, W. C., Savitz, J., & Trimble, M. (2008). The Subgenual Anterior Cingulate Cortex in Mood Disorders. CNS Spectrums, 13, 663-681.
https://doi.org/10.1017/S1092852900013754

[26]   Fellows, L. K., & Farah, M. J. (2007). The Role of Ventromedial Prefrontal Cortex in Decision Making: Judgment under Uncertainty or Judgment per se? Cerebral Cortex, 17, 2669-2674. https://doi.org/10.1093/cercor/bhl176

[27]   First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1997). Structured Clinical Interview for DSM-IV Axis I Disorders—Clinician Version (SCID-CV) (p. 84). Washington DC: American Psychiatric Press.

[28]   Gavin, A. R., Walton, E., Chae, D. H., Alegria, M., Jackson, J. S., & Takeuchi, D. (2010). The Associations between Socio-Economic Status and Major Depressive Disorder among Blacks, Latinos, Asians and Non-Hispanic Whites: Findings from the Collaborative Psychiatric Epidemiology Studies. Psychological Medicine, 40, 51-61.
https://doi.org/10.1017/S0033291709006023

[29]   Greene, J. D., & Paxton, J. M. (2009). Patterns of Neural Activity Associated with Honest and Dishonest Moral Decisions. Proceedings of the National Academy of Sciences of the United States of America, 106, 12506-12511.
https://doi.org/10.1073/pnas.0900152106

[30]   Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The Neural Bases of Cognitive Conflict and Control in Moral Judgment. Neuron, 44, 389-400.
https://doi.org/10.1016/j.neuron.2004.09.027

[31]   Hamilton, M. (1960). A Rating Scale for Depression. Journal of Neurology, Neurosurgery and Psychiatry, 23, 56-62. https://doi.org/10.1136/jnnp.23.1.56

[32]   Hamilton, M. (1967). Development of a Rating Scale for Primary Depressive Illness. British Journal of Social and Clinical Psychology, 6, 278-296.
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x

[33]   Harle, K. M., Allen, J. J., & Sanfey, A. G. (2010). The Impact of Depression on Social Economic Decision Making. Journal of Abnormal Psychology, 119, 440-446.
https://doi.org/10.1037/a0018612

[34]   Harmon-Jones, E., & Allen, J. J. (1997). Behavioral Activation Sensitivity and Resting Frontal EEG Asymmetry: Covariation of Putative Indicators Related to Risk for Mood Disorders. Journal of Abnormal Psychology, 106, 159-163.
https://doi.org/10.1037/0021-843X.106.1.159

[35]   Harmon-Jones, E., & Allen, J. J. (1998). Anger and Frontal Brain Activity: EEG Asymmetry Consistent with Approach Motivation Despite Negative Affective Valence. Journal of Personality and Social Psychology, 74, 1310-1316.
https://doi.org/10.1037/0022-3514.74.5.1310

[36]   Henriques, J. B., & Davidson, R. J. (1990). Regional Brain Electrical Asymmetries Discriminate between Previously Depressed and Healthy Control Subjects. Journal of Abnormal Psychology, 99, 22-31. https://doi.org/10.1037/0021-843X.99.1.22

[37]   Henriques, J. B., & Davidson, R. J. (1991). Left Frontal Hypoactivation in Depression. Journal of Abnormal Psychology, 100, 535-545.
https://doi.org/10.1037/0021-843X.100.4.535

[38]   Henriques, J. B., & Davidson, R. J. (1997). Brain Electrical Asymmetries during Cognitive Task Performance in Depressed and Nondepressed Subjects. Biological Psychiatry, 42, 1039-1050. https://doi.org/10.1016/S0006-3223(97)00156-X

[39]   Henriques, J. B., Glowacki, J. M., & Davidson, R. J. (1994). Reward Fails to Alter Response Bias in Depression. Journal of Abnormal Psychology, 103, 460-466.
https://doi.org/10.1037/0021-843X.103.3.460

[40]   Holmes, A. J., & Pizzagalli, D. A. (2008). Response Conflict and Frontocingulate Dysfunction in Unmedicated Participants with Major Depression. Neuropsychologia, 46, 2904-2913.
https://doi.org/10.1016/j.neuropsychologia.2008.05.028

[41]   Jaracz, M., & Borkowska, A. (2012). [Iowa Gambling Task—Tool for Assessment of Decision Making]. Psychiatria Polska, 46, 461-472.

[42]   Levin, I. P., Xue, G., Weller, J. A., Reimann, M., Lauriola, M., & Bechara, A. (2012). A Neuropsychological Approach to Understanding Risk-Taking for Potential Gains and Losses. Frontiers in Neuroscience, 6, 15. https://doi.org/10.3389/fnins.2012.00015

[43]   Li, X., Lu, Z. L., D’Argembeau, A., Ng, M., & Bechara, A. (2010). The Iowa Gambling Task in fMRI Images. Human Brain Mapping, 31, 410-423.
https://doi.org/10.1002/hbm.20875

[44]   McLaughlin, K. A. (2011). The Public Health Impact of Major Depression: A Call for Interdisciplinary Prevention Efforts. Prevention Science, 12, 361-371.
https://doi.org/10.1007/s11121-011-0231-8

[45]   Must, A., Horvath, S., Nemeth, V. L., & Janka, Z. (2013). The Iowa Gambling Task in Depression—What Have We Learned about Sub-Optimal Decision-Making Strategies? Frontiers in Psychology, 4, 732. https://doi.org/10.3389/fpsyg.2013.00732

[46]   Nauta, W. J., & Domesick, V. B. (1984). Afferent and Efferent Relationships of the Basal Ganglia. In D. Evered, & M. O’Connor (Eds.), Ciba Foundation Symposium 107 (pp. 3-29). Hoboken, NJ: John Wiley & Sons, Inc.
https://doi.org/10.1002/9780470720882.ch2

[47]   Ongur, D., Ferry, A. T., & Price, J. L. (2003). Architectonic Subdivision of the Human Orbital and Medial Prefrontal Cortex. Journal of Comparative Neurology, 460, 425-449.
https://doi.org/10.1002/cne.10609

[48]   Pizzagalli, D. A. (2011). Frontocingulate Dysfunction in Depression: Toward Biomarkers of Treatment Response. Neuropsychopharmacology, 36, 183-206.
https://doi.org/10.1038/npp.2010.166

[49]   Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced Hedonic Capacity in Major Depressive Disorder: Evidence from a Probabilistic Reward Task. Journal of Psychiatric Research, 43, 76-87.
https://doi.org/10.1016/j.jpsychires.2008.03.001

[50]   Pizzagalli, D. A., Peccoralo, L. A., Davidson, R. J., & Cohen, J. D. (2006). Resting Anterior Cingulate Activity and Abnormal Responses to Errors in Subjects with Elevated Depressive Symptoms: A 128-Channel EEG Study. Human Brain Mapping, 27, 185-201.
https://doi.org/10.1002/hbm.20172

[51]   Porter, R. J., Bourke, C., & Gallagher, P. (2007). Neuropsychological Impairment in Major Depression: Its Nature, Origin and Clinical Significance. Australian & New Zealand Journal of Psychiatry, 41, 115-128. https://doi.org/10.1080/00048670601109881

[52]   Price, J. L. (2007). Definition of the Orbital Cortex in Relation to Specific Connections with Limbic and Visceral Structures and Other Cortical Regions. Annals of the New York Academy of Sciences, 1121, 54-71. https://doi.org/10.1196/annals.1401.008

[53]   Radford, M. H., Nakane, Y., Ohta, Y., Mann, L., & Kalucy, R. S. (1991). Decision Making in Clinically Depressed Patients. A Transcultural Social Psychological Study. The Journal of Nervous and Mental Disease, 179, 711-719.
https://doi.org/10.1097/00005053-199112000-00001

[54]   Schaffer, C. E., Davidson, R. J., & Saron, C. (1983). Frontal and Parietal Electroencephalogram Asymmetry in Depressed and Nondepressed Subjects. Biological Psychiatry, 18, 753-762.

[55]   Steingroever, H., & Wagenmakers, E. J. (2014). Performance and Awareness in the Iowa Gambling Task. Behavioral and Brain Sciences, 37, 41-42.
https://doi.org/10.1017/S0140525X13000861

[56]   Stewart, J. L., Bismark, A. W., Towers, D. N., Coan, J. A., & Allen, J. J. (2010). Resting Frontal EEG Asymmetry as an Endophenotype for Depression Risk: Sex-Specific Patterns of Frontal Brain Asymmetry. Journal of Abnormal Psychology, 119, 502-512.
https://doi.org/10.1037/a0019196

[57]   Stewart, J. L., Coan, J. A., Towers, D. N., & Allen, J. J. (2011). Frontal EEG Asymmetry during Emotional Challenge Differentiates Individuals with and without Lifetime Major Depressive Disorder. Journal of Affective Disorders, 129, 167-174.
https://doi.org/10.1016/j.jad.2010.08.029

[58]   Sutton, S. K., & Davidson, R. J. (2000). Prefrontal Brain Electrical Asymmetry Predicts the Evaluation of Affective Stimuli. Neuropsychologia, 38, 1723-1733.
https://doi.org/10.1016/S0028-3932(00)00076-2

[59]   Takahashi, T., Oono, H., Inoue, T., Boku, S., Kako, Y., Kitaichi, Y. et al. (2008). Depressive Patients Are More Impulsive and Inconsistent in Intertemporal Choice Behavior for Monetary Gain and Loss than Healthy Subjects—An Analysis Based on Tsallis’ Statistics. Neuro Enocrinology Letters, 29, 351-358.

[60]   Tomarken, A. J., Davidson, R. J., & Henriques, J. B. (1990). Resting Frontal Brain Asymmetry Predicts Affective Responses to Films. Journal of Personality and Social Psychology, 59, 791-801. https://doi.org/10.1037/0022-3514.59.4.791

[61]   Tomarken, A. J., Davidson, R. J., Wheeler, R. E., & Doss, R. C. (1992). Individual Differences in Anterior Brain Asymmetry and Fundamental Dimensions of Emotion. Journal of Personality and Social Psychology, 62, 676-687.
https://doi.org/10.1037/0022-3514.62.4.676

[62]   Van Randenborgh, A., de Jong-Meyer, R., & Huffmeier, J. (2010). Decision Making in Depression: Differences in Decisional Conflict between Healthy and Depressed Individuals. Clinical Psychology & Psychotherapy, 17, 285-298.
https://doi.org/10.1002/cpp.651

[63]   Zhang, H. J., Sun, D., & Lee, T. M. (2012). Impaired Social Decision Making in Patients with Major Depressive Disorder. Brain and Behavior, 2, 415-423.
https://doi.org/10.1002/brb3.62

[64]   Zoon, H. F., Veth, C. P., Arns, M., Drinkenburg, W. H., Talloen, W., Peeters, P. J., & Kenemans, J. L. (2013). EEG Alpha Power as an Intermediate Measure between Brain-Derived Neurotrophic Factor Val66Met and Depression Severity in Patients with Major Depressive Disorder. Journal of Clinical Neurophysiology, 30, 261-267.
https://doi.org/10.1097/WNP.0b013e3182933d6e

 
 
Top