Back
 JAMP  Vol.8 No.7 , July 2020
Exact Quantized Momentum Eigenvalues and Eigenstates of a General Potential Model
Abstract: We obtain the quantized momentum eigenvalues, Pn, and the momentum eigenstates for the space-like Schr?dinger equation, the Feinberg-Horodecki equation, with the general potential which is constructed by the temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: time-dependent Wei-Hua Oscillator and time-dependent Manning-Rosen potential. We also plot the variations of the general molecular potential with its two special cases and their momentum states for few quantized states against the screening parameter.
Cite this paper: Farout, M. , Bassalat, A. , Ikhdair, S. (2020) Exact Quantized Momentum Eigenvalues and Eigenstates of a General Potential Model. Journal of Applied Mathematics and Physics, 8, 1434-1447. doi: 10.4236/jamp.2020.87109.
References

[1]   Park, T.J. (2002) Exactly Solvable Time-Dependent Problems: Potentials of Monotonously Decreasing Function of Time. Bulletin of the Korean Chemical Society, 23, 1733-1736.
https://doi.org/10.5012/bkcs.2002.23.12.1733

[2]   Vorobeichik, I., Lefebvre, R. and Moiseyev, N. (1998) Field-Induced Barrier Transparency. Europhysics Letters, 41, 111-116.
https://doi.org/10.1209/epl/i1998-00117-6

[3]   Shen, J.Q. (2003) Solutions of the Schrödinger Equation for the Time-Dependent Linear Potential.

[4]   Feng, M. (2001) Complete Solution of the Schrödinger Equation for the Time-Dependent Linear Potential. Physical Review A, 64, Article ID: 034101.
https://doi.org/10.1103/PhysRevA.64.034101

[5]   Horodecki, R. (1988) Inference for a Hazard Rate Change Point. Il Nuovo Cimento B (1971-1996), 102, 27-32.
https://doi.org/10.1007/BF02728791

[6]   Feinberg, G. (1967) On Testing for a Constant Hazard against a Change-Point Alternative. Physical Review, 159, 1089-1105.
https://doi.org/10.1103/PhysRev.159.1089

[7]   Molski, M. (2006) Space-Like Coherent States of Time-Dependent Morse Oscillator. The European Physical Journal D—Atomic, Molecular, Optical and Plasma Physics, 40, 411-416.
https://doi.org/10.1140/epjd/e2006-00182-3

[8]   Molski, M. (2010) Biosupersymmetry. Biosystems, 100, 47-54.
https://doi.org/10.1016/j.biosystems.2010.01.001

[9]   Witten, E. (1981) Dynamical Breaking of Supersymmetry. Nuclear Physics B, 188, 513-554.
https://doi.org/10.1016/0550-3213(81)90006-7

[10]   Bera, P.K. and Sil, T. (2013) Exact Solutions of Feinberg-Horodecki Equation for Time-Dependent Anharmonic Oscillator. Pramana, 80, 31-39.
https://doi.org/10.1007/s12043-012-0358-6

[11]   Deng, Z.H. and Fan, Y.P. (1957) A Potential Function of Diatomic Molecules. Journal of Shandong University (Natural Science), 1, 11.

[12]   Rong, Z., Kjaergaard, H.G. and Sage, M.L. (2003) Comparison of the Morse and Deng-Fan Potentials for XH Bonds in Small Molecules. Molecular Physics, 101, 2285-2294.
https://doi.org/10.1080/0026897031000137706

[13]   Mesa, A.D.S., Quesne, C. and Smirnov, Y.F. (1998) Generalized Morse Potential: Symmetry and Satellite Potentials. Journal of Physics A: Mathematical and General, 31, 321.
https://doi.org/10.1088/0305-4470/31/1/028

[14]   Wang, P.Q., Zhang, L.H., Jia, C.S. and Liu, J.Y. (2012) Equivalence of the Three Empirical Potential Energy Models for Diatomic Molecules. Journal of Molecular Spectroscopy, 274, 5-8.
https://doi.org/10.1016/j.jms.2012.03.005

[15]   Infeld, L. and Hull, T.E. (1951) The Factorization Method. Reviews of Modern Physics, 23, 21.
https://doi.org/10.1103/RevModPhys.23.21

[16]   Manning, M.F. and Rosen, N. (1933) A Potential Function for the Vibrations of Diatomic Molecules. Physical Review, 44, 951-954.

[17]   Dabrowska, J.W., Khare, A. and Sukhatme, U.P. (1988) Explicit Wavefunctions for Shape-Invariant Potentials by Operator Techniques. Journal of Physics A: Mathematical and General, 21, L195-L200.
https://doi.org/10.1088/0305-4470/21/4/002

[18]   Cooper, F., Khare, A. and Sukhatme, U. (1995) Supersymmetry and Quantum Mechanics. Physics Reports, 251, 267-385.
https://doi.org/10.1016/0370-1573(94)00080-M

[19]   Zhang, X.C., Liu, Q.W., Jia, C.S. and Wang, L.Z. (2005) Bound States of the Dirac Equation with Vector and Scalar Scarf-Type Potentials. Physics Letters A, 340, 59-69.
https://doi.org/10.1016/j.physleta.2005.04.011

[20]   Dong, S.H. and Gu, X.Y. (2008) Arbitrary l State Solutions of the Schrödinger Equation with the Deng-Fan Molecular Potential. Journal of Physics: Conference Series, 96, Article ID: 012109.
https://doi.org/10.1088/1742-6596/96/1/012109

[21]   Hamzavi, M., Ikhdair, S.M. and Thylwe, K.E. (2013) Equivalence of the Empirical Shifted Deng-Fan Oscillator Potential for Diatomic Molecules. Journal of Mathematical Chemistry, 51, 227-238.
https://doi.org/10.1007/s10910-012-0075-x

[22]   Oluwadare, O.J., Oyewumi, K.J., Akoshile, C.O. and Babalola, O.A. (2012) Approximate Analytical Solutions of the Relativistic Equations with the Deng-Fan Molecular Potential Including a Pekeris-Type Approximation to the (Pseudo or) Centrifugal Term. Physica Scripta, 86, Article ID: 035002.
https://doi.org/10.1088/0031-8949/86/03/035002

[23]   Hamzavi, M., Ikhdair, S.M. and Amirfakhrian, M. (2013) Exact Solutions of Feinberg-Horodecki Equation for Time-Dependent Deng-Fan Molecular Potential. Theoretical and Applied Physics, 7, 40-43.
https://doi.org/10.1186/2251-7235-7-40

[24]   Dong, S.H. (2011) Relativistic Treatment of Spinless Particles Subject to a Rotating Deng-Fan Oscillator. Communications in Theoretical Physics, 55, 969.
https://doi.org/10.1088/0253-6102/55/6/05

[25]   Arda, A. and Sever, R. (2017) Feinberg-Horodecki Equation with Pöschl-Teller Potential: Space-Like Coherent States. Zeitschrift für Naturforschung A, 72, 541-545.
https://doi.org/10.1515/zna-2017-0053

[26]   Eshghi, M., Sever, R. and Ikhdair, S.M. (2016) Exact Analytical Approach to Differential Equations with Variable Coefficients. The European Physical Journal Plus, 131, 223-229.
https://doi.org/10.1140/epjp/i2016-16386-9

[27]   Ojonubah, J.O. and Onate, C.A. (2016) Exact Solutions of Feinberg-Horodecki Equation for Time-Dependent Tietz-Wei Diatomic Molecular Potential. The African Review of Physics, 10, 453-456.

[28]   Ikot, A.N., Chukwuocha, E.O., Onyeaju, M.C., Onate, C.A., Ita, B.I. and Udoh, M.E. (2018) Thermodynamics Properties of Diatomic Molecules with General Molecular Potential. Pramana, 90, 22.
https://doi.org/10.1007/s12043-017-1510-0

[29]   Farout, M., Sever, R. and Ikhdair, S.M. (2020) Approximate Solution to the Time-Dependent Kratzer plus Screened Coulomb Potential in the Feinberg-Horodecki Equation. Chinese Physics B, 29, Article ID: 060303.
https://doi.org/10.1088/1674-1056/ab8379

[30]   Farout, M. and Ikhdair, S.M. (2020) Momentum Eigensolutions of Feinberg-Horodecki Equation with Time-Dependent Screened Kratzer-Hellmann Potential. Journal of Applied Mathematics and Physics, 8, 1207-1221.
https://doi.org/10.4236/jamp.2020.87091

[31]   Nikiforov, A.F. and Uvarov, V.B. (1988) Special Functions of Mathematical Physics. Vol. 205, Birkhäuser, Basel.
https://doi.org/10.1007/978-1-4757-1595-8

[32]   Zhang, M.C., Sun, G.H. and Dong, S.H. (2010) Exactly Complete Solutions of the Schrödinger Equation with a Spherically Harmonic Oscillatory Ring-Shaped Potential. Physics Letters A, 374, 704-708.
https://doi.org/10.1016/j.physleta.2009.11.072

[33]   Yanar, H., Aydoğdu, O. and Salti, M. (2016) Modelling of Diatomic Molecules. Molecular Physics, 114, 3134-3142.
https://doi.org/10.1080/00268976.2016.1220645

[34]   Pöschl, G. and Teller, E. (1933) Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Zeitschrift für Physik, 83, 143-151.
https://doi.org/10.1007/BF01331132

[35]   Falaye, B.J., Oyewumi, K.J., Ikhdair, S.M. and Hamzavi, M. (2014) Eigensolution Techniques, Their Applications and Fisher’s Information Entropy of the Tietz-Wei Diatomic Molecular Model. Physica Scripta, 89, Article ID: 115204.
https://doi.org/10.1088/0031-8949/89/11/115204

[36]   Hua, W. (1990) Four-Parameter Exactly Solvable Potential for Diatomic Molecules. Physical Review A, 42, 2524.
https://doi.org/10.1103/PhysRevA.42.2524

[37]   Tietz, T. (1963) Potential-Energy Function for Diatomic Molecules. The Journal of Chemical Physics, 38, 3036-3037.
https://doi.org/10.1063/1.1733648

[38]   Greene, R.L. and Aldrich, C. (1976) Variational Wave Functions for a Screened Coulomb Potential. Physical Review A, 14, 2363.
https://doi.org/10.1103/PhysRevA.14.2363

[39]   Wei, G.F., Zhen, Z.Z. and Dong, S.H. (2009) The Relativistic Bound and Scattering States of the Manning-Rosen Potential with an Improved New Approximate Scheme to the Centrifugal Term. Central European Journal of Physics, 7, 175-183.
https://doi.org/10.2478/s11534-008-0143-9

[40]   Wei, G.F. and Dong, S.H. (2008) Approximately Analytical Solutions of the Manning-Rosen Potential with the Spin-Orbit Coupling Term and Spin Symmetry. Physics Letters A, 373, 49-53.
https://doi.org/10.1016/j.physleta.2008.10.064

 
 
Top