Back
 EPE  Vol.12 No.7 , July 2020
Back Surface Recombination Velocity Dependent of Absorption Coefficient as Applied to Determine Base Optimum Thickness of an n+/p/p+ Silicon Solar Cell
Abstract: The monochromatic absorption coefficient of silicon, inducing the light penetration depth into the base of the solar cell, is used to determine the optimum thickness necessary for the production of a large photocurrent. The absorption-generation-diffusion and recombination (bulk and surface) phenomena are taken into account in the excess minority carrier continuity equation. The solution of this equation gives the photocurrent according to absorption and electronic parameters. Then from the obtained short circuit photocurrent expression, excess minority carrier back surface recombination velocity is determined, function of the monochromatic absorption coefficient at a given wavelength. This latter plotted versus base thickness yields the optimum thickness of an n+-p-p+ solar cell, for each wavelength, which is in the range close to the energy band gap of the silicon material. This study provides a tool for improvement solar cell manufacture processes, through the mathematical relationship obtained from the thickness limit according to the absorption coefficient that allows base width optimization.
Cite this paper: Sidi Dede, M. , Lamine Ba, M. , Amadou Ba, M. , Ndiaye, M. , Gueye, S. , Sow, E. , Diatta, I. , Diop, M. , Wade, M. and Sissoko, G. (2020) Back Surface Recombination Velocity Dependent of Absorption Coefficient as Applied to Determine Base Optimum Thickness of an n+/p/p+ Silicon Solar Cell. Energy and Power Engineering, 12, 445-458. doi: 10.4236/epe.2020.127027.
References

[1]   Meier, D.L., Hwang, J.-M. and Campbell, R.B. (1988) The Effect of Doping Density and Injection Level on Minority Carrier Lifetime as Applied to Bifacial Dendritic Web Silicon Solar Cells. IEEE Transactions on Electron Devices, 35, 70-79.
https://doi.org/10.1109/16.2417

[2]   Rabbant, K.S. and Lamb, D.R. (1981) A Quick Method for the Determination of Bulk Generation Lifetime in Semiconductors from Pulsed MOS Capacitance Measurements. Solid-State Electronics, 24, 661-664.
https://doi.org/10.1016/0038-1101(81)90196-9

[3]   Sharma, S.K., Singh, S.N., Chakravarty, B.C. and Das, B.K. (1986) Determination of Minority-Carrier Diffusion Length in a p-Silicon Wafer by Photocurrent Generation Method. Journal of Applied Physics, 60, 3550-3552.
https://doi.org/10.1063/1.337610

[4]   Nam, L.Q., Rodot, M., Ghannam, M., Cppye, J., De Schepper, P., Nijs, J., Perichaud, I. and Martinuzzi, S. (1992) Solar Cells with 15.6% Efficiency on Multicristalline Silicone, Using Impurity Gettering, Back Surface Field and Emitter Passivation. International Journal of Solar Energy, 11, 273-279.
https://doi.org/10.1080/01425919208909745

[5]   Garcia-Belmonte, G., et al. (2010) Simultaneous Determination of Carrier Lifetime and Electron Density-of-states in P3HT:PCBM Organic Solar Cells under Illumination by Impedance Spectroscopy. Solar Energy Materials & Solar Cells, 94, 366-375.
https://doi.org/10.1016/j.solmat.2009.10.015

[6]   Kunst, M., Muller, G., Schmidt, R. and Wetzel, H. (1988) Surface and Volume Decay Processes in Semiconductors Studied by Contactless Transient Photoconductivity Measurements. Applied Physics A, 46, 77-85.
https://doi.org/10.1007/BF00615912

[7]   Ray, U.C. and Agarwal, S.K. (1988) Wavelength Dependence of Short-Circuit Current Decay in Solar Cells. Journal of Applied Physics, 63, 547-549.
https://doi.org/10.1063/1.340084

[8]   Furlan, J. and Amon, S. (1985) Approximation of the Carrier Generation Rate in Illuminated Silicon. Solid-State Electronics, 28, 1241-1243.
https://doi.org/10.1016/0038-1101(85)90048-6

[9]   Mohammad, S.N. (1987) An Alternative Method for the Performance Analysis of Silicon Solar Cells. Journal of Applied Physics, 28, 767-772.
https://doi.org/10.1063/1.338230

[10]   Sissoko, G., Nanéma, E., Corréa, A. Biteye, P.M., Adj, M. and Ndiaye, A.L. (1998) Silicon Solar Cell Recombination Parameters Determination Using the Illuminated I-V Characteristic. Renewable Energy, 3, 1848-1851.

[11]   Wise, J.F. (1970) Vertical Junction Hardened Solar Cell. U.S. Patent 3, 690-953.

[12]   Stokes, E.D. and Chu, T.L. (1977) Diffusion Lengths in Solar Cells From Short-Circuit Current Measurements. Applied Physics Letters, 30, 425-426.
https://doi.org/10.1063/1.89433

[13]   Alam, M.K. and Yeow, Y.T. (1981) Evaluation of the Surface Photovoltage Method of Minority-Carrier Diffusion-Length Measurement. Solid-Solar Electronics, 24, 1117-1119.

[14]   Madougou, S., Made, F., Boukary, M.S. and Sissoko, G. (2007) Recombination Parameters Determination by Using Internal Quantum Efficiency (IQE) Data of Bifacial Silicon Solar Cells. Advanced Materials Research, 18-19, 313-324.
https://doi.org/10.1016/0038-1101(81)90179-9

[15]   Zouma, B., Maiga, A.S., Dieng, M., Zougmore, F. and Sissoko, G. (2009) 3D Approach of Spectral Response for a Bifacial Silicon Solar Cell under a Constant Magnetic Field. Global Journal of Pure and Applied Sciences, 15, 117-124.
https://doi.org/10.4314/gjpas.v15i1.44908

[16]   Ly, I., Ndiaye, M., Wade, M., Thiam, N., Sega, Gu. and Siaaoko, G. (2013) Sissoko Concept of Recombination Velocity Sfcc at the Junction of a Bifacial Silicon Solar Cell, in Steady State, Initiating the Short-Circuit Condition. Research Journal of Applied Sciences, Engineering and Technology, 5, 203-208.
https://doi.org/10.19026/rjaset.5.5105

[17]   Defer, D., Bellatar, S. and Duthoit, B. (1993) Nondestructive in Situ Inspection of a Wall by Thermal Impedance. Materials and Structure, 26, 3-7.
https://doi.org/10.1007/BF02472231

[18]   Diao, A., Wade, M., Thiame, M. and Sissoko, G. (2017) Bifacial Silicon Solar Cell Steady Photoconductivity under Constant Magnetic Field and Junction Recombination Velocity Effects. Journal of Modern Physics, 8, 2200-2208.
https://doi.org/10.4236/jmp.2017.814135

[19]   Ndiaye, E.H., Sahin, G, Dieng, M., Thiam, A, Diallo, H.L., Ndiaye, M. and Sissoko, G. (2015) Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar under Frequency Modulation and Irradiation. Journal of Applied Mathematics and Physics, 3, 1522-1535.
https://doi.org/10.4236/jamp.2015.311177

[20]   Gueye, M., Diallo, H.L., Moustapha, A.K.M., Traore, Y., Diatta, I. and Sissoko, G. (2018) Ac Recombination Velocity in a Lamella Silicon Solar Cell. World Journal of Condensed Matter Physics, 8, 185-196.
https://doi.org/10.4236/wjcmp.2018.84013

[21]   Traore, Y., Thiam, N., Thiame, M., Thiam, A., Ba, M.L., Diouf, M.S., Diatta, I., Mballo, O., Sow, E.H., Wade, M. and Sissoko, G. (2019) AC Recombination Velocity in the Back Surface of a Lamella Silicon Solar Cell under Temperature. Journal of Modern Physics, 10, 1235-1246.
https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2019.1010082


[22]   Gokan, S., Thiam, N., Ndiaye, M., Diao, A., Mbow, B. and Sissoko, G. (2013) Influence of Illumination Wavelength on the Electrical Parameters of A Vertical Junction Silicon Solar Cell under Frequency Modulation. International Journal of Electrical Engineering, 1, 23-28.
https://www.ipasj.org/IIJEE/IIJEE.htm

[23]   Roos, O.V. and Landsberg, P.T. (1985) Effect of Recombination on the Open-Circuit Voltage of a Silicon Solar Cell. Journal of Applied Physics, 57, 4746-4751.
https://doi.org/10.1063/1.335339

[24]   Gaubas, E. and Vanhellemont, J. (1996) A Simple Technique for the Separation of Bulk and Surface Recombination Parameters in Silicon. Journal of Applied Physics, 80, 6293-6297.
https://doi.org/10.1063/1.363705

[25]   Thiame, M., Diene, A., Seibou, B., Sarr, C.T., Ould Cheikh, M.L., Diatta, I., Dieye, M., Traore, Y. and Sissoko, G. (2017) 3D Study of a Bifacial Polycrystalline Silicon Solar Cell Back Surface Illuminated: Influence of Grain Size and Recombination Velocity. Journal of Scientific and Engineering Research, 4, 135-145.

[26]   Sy, K.M., Diene, A., Tamba, S., Diouf, M.S., Diatta, I., Dieye, M., Traore, Y. and Sissoko, G. (2016) Effect of Temperature on Transient Decay Induced by Charge Removal of a Silicon Solar Cell under Constant Illumination. Journal of Scientific and Engineering Research, 3, 433-445.
https://jsaer.com/

[27]   Sissoko, G., Sivoththanam, S., Rodot, M. and Mialhe, P. (1992) Constant Illumination-Induced Open Circuit Voltage Decay (CIOCVD) Method, as Applied to High Efficiency Si Solar Cells for Bulk and Back Surface Characterization. 11th European Photovoltaic Solar Energy Conference and Exhibition, Montreux, 12-16 October 1992, 352-354.

[28]   Rose, B.H. and Weaver, H.T. (1983) Determination of Effective Surface Recombination Velocity and Minority-Carrier Lifetime in High-Efficiency Si Solar Cells. Journal of Applied Physics, 54, 238-247.
https://doi.org/10.1063/1.331693

[29]   Diallo, H.L., Maiga, S.A., Wereme, A. and Sissoko, G. (2008) New Approach of Both Junction and Back Surface Recombination Velocities in a 3D Modelling Study of a Polycrystalline Silicon Solar Cell. The European Physical Journal Applied Physics, 42, 203-211.
https://doi.org/10.1051/epjap:2008085

[30]   Lush, G.B., Macmillan, H.F., Keyes, B.M., Levi, D.H. Melloch, M.R., Ahrenkiel, R.K. and Lundstrom, M.S. (1992) A Study of Minority Carrier Life Time versus Doping Concentation in N-Type Gaas Grown by Metalorganic Chemical Vapor Deposition. Journal of Applied Physics, 72, 1436.
https://doi.org/10.1063/1.351704

[31]   Dhariwal, S.R., Mathur, R.K., Mehrotra, D.R. and Mittal, S. (1983) The Physics of p-n Junction Solar Cells Operated under Concentrated Sunlight. Solar Cells, 8, 137- 155.
https://doi.org/10.1016/0379-6787(83)90089-3

[32]   Jain, G.C., Singh, S.N. and Kotnala, R.K. (1983) Diffusion Length Determination in N+-P+-P+ Based Silicon Solar Cells from the Intensity Dependence of the Short Circuit for Illumination From the P+ Side. Solar Cells, 82, 239-248.
https://doi.org/10.1016/0379-6787(83)90063-7

[33]   Basu, P.K. and Singh, S.N. (1994) On the Determination of Minority Carrier Diffusion Length in the Base Region of N+-P-P+ Silicon Solar Cells Using Photoresponse Methods. Solar Energy Materials and Solar Cells, 33, 317-329.
https://doi.org/10.1016/0927-0248(94)90234-8

[34]   Antilla, O.J. and Hahn, S.K. (1993) Study on Surface Photovoltage Measurement of Long Diffusion Length Silicon: Simulation Results. Journal of Applied Physics, 74, 558-569.
https://doi.org/10.1063/1.355343

[35]   Cuevas, A., Luque, A. and Ruiz, J.M. (1980) N+Pn+ Double-Sided Solar Cell for Optimal Static Concentration. Proceedings of the 14th IEEE Photovoltaic Specialists Conference, San Diego, 7-10 January 1980, 76-81.

[36]   Misiakos, K. and Tsamakis, D. (1994) Electron and Hole Mobilities in Lightly Doped Silicon. Applied Physics Letters, 64, 2007-2009.
https://doi.org/10.1063/1.111721

[37]   Mandelis, A. (1989) Coupled Ac Photocurrent and Photothermal Reflectance Response Theory of Semiconducting p-n Junctions. I. Journal of Applied Physics, 66, 5572-5583.
https://doi.org/10.1063/1.343662

[38]   Honma, N. and Munakata, C. (1987) Sample Thickness Dependence of Minority Carrier Lifetimes Measured Using an Ac Photovoltaic Method. Japanese Journal of Applied Physics, 26, 2033-2036.
https://doi.org/10.1143/JJAP.26.2033

[39]   Schinke, C., Hinken, D., Bothe, K., Ulzhofer, C., Milsted, A., Schmidt, J., Brendel, R. (2011) Determination of the Collection Diffusion Length by Electroluminescence Imaging. Energy Procedia, 8, 147-152.
https://doi.org/10.1016/j.egypro.2011.06.116

[40]   Sissoko, G., Dieng, B., Correa, A., Adj, M. and Azilinon, D. (1998) Silicon Solar Cell Space Charge Region Width Determination by a Study in Modelling. Word Renewable Energy Congres, 3, 1852-1855.

[41]   Balde, F., Diallo, H.L., Ba, H.Y., Traore, Y., Diatta, I., Diouf, M.S., Wade, M. and Sissoko, G. (2018) External Electric Field as Applied to Determine Silicon Solar Cell Space Charge Region Width. Journal of Scientific and Engineering Research, 5, 252- 259.
https://jsaer.com/

[42]   Dieng, M., Seibou, B., Ibrahima, L.Y., Diouf, M.S., Wade, M. and Sissoko, G. (2017) Silicon Solar Cell Emitter Extended Space Charge Region Determination under Modulated Monochromatic Illumination by Using Gauss’s Law. International Journal of Innovative Technology and Exploring Engineering, 6, 17-20.

[43]   Diatta, I., Ly, I., Wade, M., Diouf, M.S., Mbodji, S. and Sissoko, G. (2017) Temperature Effect on Capacitance of a Silicon Solar Cell under Constant White Biased Light. World Journal of Condensed Matter Physics, 6, 261-268.
https://doi.org/10.4236/wjcmp.2016.63024

[44]   Agarwala, A. and Tewary, V.K. (1980) Response of a Silicon p-n Solar Cell to High Intensity Light. Journal of Physics D: Applied Physics, 13, 1885-1898.
https://doi.org/10.1088/0022-3727/13/10/018

[45]   Sissoko, G, Museruka, C, Corréa, A, Gaye I and Ndiaye. A.L. (1996) Light Spectral Effect on Recombination Parameters of Silicon Solar Cell. World Renewable Energy Congress, Pergamon, Part III, 1487-1490.

[46]   Gover, A. and Stella, P. (1974) Vertical Multijunction Solar-Cell One-Dimensional Analysis. IEEE Transactions on Electron Devices, 21, 351-356.
https://doi.org/10.1109/T-ED.1974.17927

[47]   Diop, M.S., Ba, H.Y., Thiam, N., Diatta, I., Traore, Y., Ba, M.L., Sow, E.H., Mballo, O. and Sissoko, G. (2019) Surface Recombination Concept as Applied to Determinate Silicon Solar Cell Base Optimum Thickness with Doping Level Effect. World Journal of Condensed Matter Physics, 9, 102-111.
https://www.scirp.org/Journal/Wjcmp/
https://doi.org/10.4236/wjcmp.2019.94008


[48]   Ba, M.L., Thiam, N., Thiame, M., Traore, Y., Diop, M.S., Ba. M., Sarr, C.T., Wade, M. and Sissoko, G. (2019) Base Thickness Optimization of a (N+-P-P+) Silicon Solar Cell in Static Mode under Irradiation of Charged Particles. Journal of Electromagnetic Analysis and Applications, 11, 173-185.
https://doi.org/10.4236/jemaa.2019.1110012

[49]   Faye, D., Gueye, S., Ndiaye, M., Ba, M., Diatta, I., Traore, Y., Diop, M., Diop, G., Diao, A. and Sissoko, G. (2020) Lamella Silicon Solar Cell under Both Temperature and Magnetic Field: Width Optimum Determination. Journal of Electromagnetic Analysis and Applications, 12, 43-55.
https://doi.org/10.4236/jemaa.2020.124005

[50]   Ould Mohamed, N.M.M., Sow, O., Gueye, S., Traore, Y., Diatta, I., Thiam, A., Ba, M.A., Mane, R., Ly, I. and Sissoko, G. (2019) Influence of Both Magnetic Field and Temperature on Silicon Solar Cell Base Optimum Thickness Determination. Journal of Modern Physics, 10, 1596-1605.
https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2019.1013105


[51]   Diop, G., Ba, H.Y., Thiam, N., Traore, Y., Dione, B., Ba, M.A., Diop, P., Diop, M.S., Mballo, O. and Sissoko, G. (2019) Base Thickness Optimization of a Vertical Series Junction Silicon Solar Cell under Magnetic Field by the Concept of Back Surface Recombination Velocity of Minority Carrier. ARPN Journal of Engineering and Applied Sciences, 14, 4078-4085.

[52]   Fossum, J.G. (1977) Physical Operation of Back-Surface-Field Silicon Solar Cells. IEEE Transactions on Electron Devices, 2, 322-325.
https://doi.org/10.1109/T-ED.1977.18735

[53]   Rajman, K., Singh, R. and Shewchun, J. (1979) Absorption Coefficient for Solar Cell Calculations. Solid State Electronics, 22, 793-795.
https://doi.org/10.1016/0038-1101(79)90128-X

[54]   Saritas, M. and Mckell, H.D. (1988) Comparison of Minority Carrier Diffusion Length Measurements in Silicon by the Photoconductive Decay and Surface Photovoltage Methods. Journal of Applied Physics, 63, 4561-4567.
https://doi.org/10.1063/1.340155

[55]   Bocande, Y.L.B., Correa, A., Gaye, I., Sow, M.L. and Sissoko, G. (1994) Bulk and Surfaces Parameters Determination in High Efficiency Si Solar Cells. Proceedings of the Renewable Energy Congress, 5, 1698-1700.

[56]   Joardar, K., Dondero, R.C. and Schroda, D.K. (1989) Critical Analysis of the Small- Signal Voltage-Decay Technique for Minority-Carrier Lifetime Measurement in Solar Cells. Solid State Electronics, 32, 479-483.
https://doi.org/10.1016/0038-1101(89)90030-0

[57]   Dede, M.M.S., Ndiaye, M., Gueye, S., Ba, M.L., Diatta, I., Diouf, M.S., Sow, E.H. Ba, A.M., Diop, M. and Sissoko, G. (2020) Optimum Base Thickness Determination Technique as Applied to N/P/P+ Silicon Solar Cell under Short Wavelengths Monochromatic Illumination. International Journal of Innovation and Applied Studies, 29, 576-586.
http://www.ijias.issr-journals.org/

[58]   Ba, M.L., Diallo, H.L., Ba, H.Y., Traore, Y., Diatta, I., Diouf, M.S., Wade, M. and Sissoko, G. (2018) Irradiation Energy Effect on a Silicon Solar Cell: Maximum Power Point Determination. Journal of Modern Physics, 9, 2141-2155.
https://www.scirp.org/Journal/Jmp/
https://doi.org/10.4236/jmp.2018.912135


 
 
Top