[1] T. Markel, M. Zolot, K. B. Wipke, and A. A. Pesaran, (2003) Energy storage system requirement for hybrid fuel cell vehicles. Advanced Automotive Battery Con-ference, Nice, France, June. 10-13.
[2] A. C. Baisden and A. Emadi, (2004) ADVISOR-based model of a battery and an ultra capacitor energy source for hybrid vehicles. IEEE Transactions on Vehicular Technology, 53(1).
[3] Y. B. Yu and Q. N. Wang, (2005) The redevelopment of synergy electric power HEV simulation software based on advisor. Jilin Daxue Xuebao (Gongxueban) /Journal of Jilin University (Engineering and Technology Edition), 35(4), 353-357.
[4] Y. B. Yu and W. H. Wang, (2007) The research on fuzzy logic control strategy of synergic electric system of hy-brid electric vehicle. SAE Internatioal, 07APAC-185.
[5] D. P. Bertsekas, (1995) Dynamic programming and op-timal control, Athena Scientific.
[6] J. M. Kang, I. Kolmanovsky, and J. W. Grizzle, (1999) Approximate dynamic programming solutions for lean burn engine aftertreatment. proceedings of the IEEE conference on decision and control, 2, Piscataway, NJ, 1703-1708.
[7] C. Lin, J. Kang, J. W. Grizzle, and H. Peng, (2001) En-ergy management strategy for a parallel hybrid electric truck. Proceedings of the 2001 American Control Con-ference, Arlington, VA, 2878-2883.
[8] M. P. O’Keefe and T. Markel, (2006) Dynamic pro-gramming applied to investigate energy management strategies for a plug-in HEV. The 22nd International Bat-tery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition (EVS-22), Yokohama, Japan, October 23–28.
[9] L. V. P′erez and G. R. Bossio, (2006) Optimization of power management in an hybrid electric vehicle using dynamic programming. Mathematics and Computers in Simulation, 73, 244–254.