Back
 JIS  Vol.11 No.3 , July 2020
Towards Post-Quantum Cryptography Using Thermal Noise Theory and True Random Numbers Generation
Abstract: The advent of quantum computers and algorithms challenges the semantic security of symmetric and asymmetric cryptosystems. Thus, the implementation of new cryptographic primitives is essential. They must follow the breakthroughs and properties of quantum calculators which make vulnerable existing cryptosystems. In this paper, we propose a random number generation model based on evaluation of the thermal noise power of the volume elements of an electronic system with a volume of 58.83 cm3. We prove through the sampling of the temperature of each volume element that it is difficult for an attacker to carry out an exploit. In 12 seconds, we generate for 7 volume elements, a stream of randomly generated keys of 187 digits that will be transmitted from source to destination through the properties of quantum cryptography.
Cite this paper: Ndagijimana, P. , Nahayo, F. , Assogba, M. , Ametepe, A. and Shabani, J. (2020) Towards Post-Quantum Cryptography Using Thermal Noise Theory and True Random Numbers Generation. Journal of Information Security, 11, 149-160. doi: 10.4236/jis.2020.113010.
References

[1]   Shor, P. (1994) Algorithm for Quantum Computation: Discrete Logarithms and Factoring. In: Proc. 35th Annual Symposium on Foundations of Computer Science, IEEE Press, Santa Fe, New Mexico, USA, 124-134.

[2]   Grover, L.K. (1996) Fast Quantum Mechanical Algorithm for Database Search. STOC-96: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, Philadelphia, Pennsylvania, USA, July 1996, 212-219.
https://doi.org/10.1145/237814.237866

[3]   Shor, P. (1997) Polynomial-Time Algorithms for Prime Factorization and Discret Logarithms on a Quantum Computer. SIAM Journal on Computing, 26, 1484-1509.
https://doi.org/10.1137/S0097539795293172

[4]   Grassl, M., Langenberg, B., Roetteler, M. and Steinwandt, R. (2016) Applying Grover’s Algorithm to AES: Quantum Resource Estimates. Proceedings of the 7th International Conference on Post-Quantum Cryptography, Vol. 9606, 29-43.
https://doi.org/10.1007/978-3-319-29360-8_3

[5]   Rao, S., Mahto, D., Yadav, D.K. and Khan, D.A. (2017) The AES-256 Cryptosystem Resists Quantum Attacks. International Journal of Advanced Computer Research, 8, 404-408.

[6]   Moody, D., Jordan, S.P., Chen, L. and Li, Y.-K. (2016) NIST Report on Post-Quantum Cryptography. National Institute of Standards and Technology Internal Report 8105, 15 p.

[7]   Ohya, M. and Masuda, N. (2000) Np Problems in Quantum Algorithm. Open Systems and Information Dynamics, 7, 33-39.
https://doi.org/10.1023/A:1009651417615

[8]   Furer, M. (2008) Solving NP-Complete Problems with Quantum Search. Theoretical Informatics, 8th Latin American Symposium, Buzios, 7-11 April 2008, 784-792.
https://doi.org/10.1007/978-3-540-78773-0_67

[9]   Fechner, B. and Osterloh, A. (2010) A Meta-Level True Random Number Generator. International Journal of Critical Computer-Based Systems, 1, 267-279.
https://doi.org/10.1504/IJCCBS.2010.031719

[10]   Liu, S. (1990) On Fourier’s Law of Heat Conduction. Continuum Mechanics and Thermodynamics, 2, 301-305.
https://doi.org/10.1007/BF01129123

[11]   Stipcevic, M. and Koç, Ç.K. (2014) True Random Number Generators. In: Koç, Ç.K., Ed., Open Problem in Mathematics and Computational Science, Springer, Berlin, 275-315. https://doi.org/10.1007/978-3-319-10683-0_12

[12]   Gong, L.S., Zhang, J.G., Liu, H.F., Sang, L.X. and Wang, Y.C. (2019) True Random Numbers Generators Using Electrical Noise. IEEE Access, 7, 125796-125805.
https://doi.org/10.1109/ACCESS.2019.2939027

[13]   Wilber, S.A. (2005) True Random Number Generator and Entropy Calculation Device and Method. US 6,862,605B2.

[14]   Yu, F., Li, L.X., Tang, Q., Quai, S., Song, Y. and Xu, Q. (2019) A Survey on True Random Number Generators Based on Chaos. Discrete Dynamics in Nature and Society, 2019, Article ID: 2545123. https://doi.org/10.1155/2019/2545123

[15]   Bagini, V. and Bucci, M. (1999) A Design of Reliable True Random Number Generator for Cryptographic Applications. 1st International Workshop on Cryptographic Hardware and Embedded Systems, Worcester, 12-13 August 1999, 204-218.
https://doi.org/10.1007/3-540-48059-5_18

[16]   Walker, S. and Foo, S.Y. (2001) Evaluating Metastability in Electronic Circuits for Random Number Generation. Proceedings IEEE Computer Society Workshop on VLSI, Orlando, 19-20 April 2001, 99-101.

[17]   Schurr, J., Moser, H., Pierz, K. and Ramm, G. (2011) Johnson-Nyquist Noise of the Quantized Hall Resistance. IEEE Transactions on Instrumentation and Measurement, 60, 2280-2285. https://doi.org/10.1109/TIM.2010.2088050

[18]   Nyquist, H. (1928) Thermal Agitation of Electric Charge in Conductors. Physical Review, 32, 110-113.
https://doi.org/10.1103/PhysRev.32.110

[19]   Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423, and 623-656.
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

[20]   Maurer, U.M. (1992) A Universal Statistical Test for Random Bit Generators. Journal of Cryptology, 5, 89-105.
https://doi.org/10.1007/BF00193563

[21]   Parisi, G. and Rapuano, F. (1985) Effects of the Random Number Generator on Computer Simulations. Physic Letters B, 157, 301-302.
https://doi.org/10.1016/0370-2693(85)90670-7

[22]   Sunar, B., Martins, W.J. and Stinson, D.R. (2007) A Provable Secure True Random Number Generator with Build in Tolerance to Active Attacks. IEEE Transaction on Computer, 56, 109-119.
https://doi.org/10.1109/TC.2007.250627

[23]   Shannon, C.E. (1979) Communication Theory of Secrecy Systems. Bell System Technical Journal, 28, 656-715.

[24]   Yamamoto, H. (1994) Coding Theorems for Shannon’s Cipher System with Correlated Source Outputs and Common Information. IEEE Transaction on Information Theory, 40, 85-95. https://doi.org/10.1109/18.272457

[25]   Ametepe, A.F.-X., Ahouandjinou, S.A.R.M. and Ezin, E.C. (2019) Secure Encryption by Combining Asymmetric and Symmetric Cryptographic Method for Data Collection WSN in Smart Agriculture. IEEE ISC2, Casablanca, 14-17 October 2019, 93-99.

 
 
Top