JWARP  Vol.12 No.7 , July 2020
Use of Landsat 8 OLI Images to Assess Groundwater Potential Areas in the Bamun Plateau: Cameroon Volcanic Line (CVL)
Abstract: The problem of groundwater supply in the Bamun plateau situated in the Cameroon Volcanic Line exists and no proper solution has been found so far. This investigation intends to find the suitable groundwater potential zones by overlaying the geomorphologic map, lineament map, lineament density map and lithological map, using visual interpretation of Landsat imagery. The results reveal that about 1921 structural elements, ranging in size, from 30 m to 5.845 km with an average length of 671 m in the field. The total length of the mapped lineaments is approximately 1289 km. The most important lineament (5.845 km length) diagonally crosses the study area in the direction NNE-SSW. In addition to this trend, all others are smaller than 14 km. More than 92% of lineaments are less than 5 km in size and only 1.3% of them are larger than 10 km. Small lineaments are thus the most numerous. According to their directions, the lineaments listed are grouped into 18 directional classes of 10-degree intervals. The rosette of their directions highlights the preferred directions NE-SW, N-S, E-W, NNE-SSW and ENE-WSW. Most of the lineaments clusters in the central part of the area are N20° - 30°E and N60° - 70°E trending lineaments. In this study, the NE-SW trend dominates the structural trend followed by NW-SE and N-S. This can be an indication of the directions of groundwater movement in the area. Alluvial plain and valley have moderate to very good groundwater potential that occurs all over the study area. Porosity of the volcanic rocks varies greatly, but it is everywhere more porous than the underlying, unweathered bedrock. There are essentially three classes (low, average and high) of groundwater potential zones. Hight potential zones are observed around the localities of the Khogham, Mbatpit and Mbam massifs on the one hand and Manswen, Njikwop, Mfelap, Foumban, Njindaré, Nkoundem and Ngwen jigoumbé localities on the other hand. About 13% of the area has good groundwater potential around the mountains while 58% is moderately good which corresponds to high to moderate lineament densities situated at average altitude 1200 m and about 31% of the area has poor groundwater potential corresponding to low lineament density areas. Moreover, this work has helped develop a detailed lineament map that can be used for mining and hydrological prospecting campaigns.
Cite this paper: Mouncherou, O. , Njikeu, O. , Kamtchueng, B. , Kpoumié, A. , Mfonka, Z. , Mfochive, O. , Danwe, Y. , Bello, M. , Moundi, A. , Ngoupayou, J. , Tonga, J. (2020) Use of Landsat 8 OLI Images to Assess Groundwater Potential Areas in the Bamun Plateau: Cameroon Volcanic Line (CVL). Journal of Water Resource and Protection, 12, 558-576. doi: 10.4236/jwarp.2020.127034.

[1]   El Hadani, D. (1997) Télédétection et Systèmes d’Information Géographique pour la gestion et la recherche de l’eau, Géo-Observateur. Les Rapport Thématiques, 1, 28.

[2]   Moreau, C., Regnoult, J.M., Deruelle, B. and Robineau, B. (1987) A New Tectonic Model for the Cameroon Line, Central Africa. Tectonophysics, 139, 317-334.

[3]   Fitton, J.G. (1987) The Cameroon Line, West Africa. A Comparison between Oceanic and Continental Alkaline Volcanism in Alkaline Igneous Rocks. Geological Society, London, Special Publications, 30, 223.

[4]   Wandji, P. (1995) Le volcanisme récent de la plaine du noun (Ouest Cameroun) Volcanologie, pétrologie géochimie et pouzzolanicité. Thèse Etat Univ. Yaoundé I, Cameroun, 295 p.

[5]   Marzoli, A., Piccillo, E.M., Renne, P.R., Bellieni, G., Iacaumin, M., Nyobe, J.B. and Tongwa, A.T. (2000) The Cameroon Volcanic Line Revisited: Petrogenesis of Continental Basaltic Magmas from Lithospheric and Asthenospherc Mantle Sources. Journal of Petrology, 2, 87-109.

[6]   Menard, J.-J., Bardintzeff, J.-M., Moundi, A., Wandji, P., Ngounouno, I. and Bellon, H. (2002) Place du magmatisme transitionnel dans le volcanisme de la Ligne du Cameroun. 19è Réunion des Sciences de la Terre, Nantes, 9-12 Avril 2002, 243.

[7]   Moundi, A., Wandji, P., Bardintzeff, J.-M., Menard, J.-J., Okomo Atouba, L.-C., Mouncherou, O.-F., Reusser, E., Bellon, H. and Tchoua, F.M. (2007) Les basaltes éocènes à affinité transitionnelle du plateau Bamoun, témoins d’un réservoir mantellique enrichi sous la ligne du Cameroun. Comptes Rendus Geoscience, 339, 396-406.

[8]   Bessoles, B. (1977) Géologie de l’Afrique: Le craton Ouest-africain. Mém. BRGM, 403 p.

[9]   Bessoles, B. and Trompettes, R. (1976) Géologie de l’Afrique centrale partie sud et zone mobile soudanaise. Mémoire BRGM N 92 Paris 402 p.

[10]   Dumort, J.C. (1968) Carte géologique de reconnaissance et note explicative sur la feuille Douala-Ouest (1500000) République Fédérale du Cameroun. Direction des Mineset de la Géologie du Cameroun. 69 p.

[11]   Peronne, Y. (1969) Carte géologique de reconnaissance de Wum-Banyo à 1/500 000ème. Publication de la Direction des Mines et de la Géologie du Cameroun.

[12]   Weecksteen, G. (1957) Carte géologique de reconnaissance à l'échelle du 1/500.000 Territoire du Cameroun. Douala Est. Dir. Mines Géol. Cameroun. Paris. 1 carte et notice explicative. Imprimerie Nationale de Yaoundé. 35 p.

[13]   Aminov, J., Chen, X., Anming, B., Aminov, J., Mamadjanov, Y., Aminov, J. and Latipa, T. (2019) Comparison of Multi-Resolution Optical Landsat-8, Sentinel-2 and Radar Sentinel-1 Data for Automatic Lineament Extraction: A Case Study of Alichur Area, SE Pamir.

[14]   Hung, L.Q., Batelaan, O. and de Smedt, F. (2005) Lineament Extraction and Analysis, Comparison of Landsat ETM and ASTER Imagery. Case Study: Suoimuoi Tropical Karst Catchment. Vietnam, Proceedings of SPIE, 5983, 59830T.

[15]   Adiri, Z., elHarti, A., Jellouli, A., Lhissou, R., Maacha, L., Azmi, M., Zouhair, M. and Bachaoui, M.E. (2017) Comparison of Landsat-8, ASTER and Sentinel 1 Satellite Remote Sensing Data in Automatic Lineaments Extraction: A Case Study of Sidi Flah-Bouskour Inlier, Moroccan Anti Atlas. Advances in Space Research, 60, 2355-2367.

[16]   Chrysoulakis, N., Abrams, M., Feidas, H. and Arai, K. (2010) Comparison of Atmospheric Correction Methods Using ASTER Data for the Area of Crete, Greece. International Journal of Remote Sensing, 31, 6347-6385.

[17]   Gene Rose, Pan Sharpening Tools within Remote View. 13 p.

[18]   Castleman, K. (1995) Digital Image Processing. Prentice Hall, Upper Saddle River.

[19]   Veeraraghavan, V. (2004) A Quantitative Analysis of Pansharpened Images. Master Degree of Science, Mississippi State University, Starkville, 94 p.

[20]   Eskicioglu, A. and Fisher, P. (1995) Image Quality Measures and Their Performance. IEEE Transactions on Communications, 43, 2959-2965.

[21]   Eldosouky, A.M., Abdelkareem, M. and Elkhateeb, S.O. (2017) Integration of Remote Sensing and Aeromagnetic Data for Mapping Structural Features and Hydrothermal Alteration Zones in Wadi Allaqi Area, South Eastern Desert of Egypt. Journal of African Earth Sciences, 130, 28-37.

[22]   Tchindjang, M., Njilah, I.K., Nziengui, M., Banga, C.R. and Menga, V.F. (2006) Caracterisation par l’imagerie satellitale de trois grandes structures d’effondrement dans les hautes terres de l’ouest Cameroun. African Journal of Science and Technology Science and Engineering Series, 7, 8-22.

[23]   Prasad, R.K., Mondal, N.C., Pallavi, B., Nandakumar, M.V. and Singh, V.S. (2008) Deciphering Potential Groundwater Zone in Hard Rock through the Application of GIS. Environmental Geology, 55, 467-475.