Back
 JAMP  Vol.8 No.7 , July 2020
Exact Soliton-Like Spherical Symmetric Solutions of the Heisenberg-Ivanenko Type Nonlinear Spinor Field Equation in Gravitational Theory
Abstract: In the present research work, we have obtained the exact spherical symmetric solutions of Heisenberg-Ivanenko nonlinear spinor field equations in the Gravitational Theory. The nonlinearity in the spinor Lagrangian is given by an arbitrary function which depends on the invariant generated from the bilinear spinor form Is = S2. We admit the static spherical symmetric metric. It is shown that a soliton-like configuration has a localized energy density and a finite total energy. In addition, The total charge and total spin are also finite. Role of the metric i.e. the proper gravitational field of elementary particles in the formation of the field configurations with limited total energy, spin and charge has been examined by solving the field equations in flat space-time. It has been established that the obtained solutions are soliton-like configuration with bounded energy density and finite total energy. In order to clarify the role of the nonlinearity in this model, we have obtained exact statical symmetric solutions to the above spinor field equations in the linear case corresponding to Dirac’s linear equation. It is proved that soliton-like solutions are absent.
Cite this paper: Adomou, A. , Edou, J. , Hontinfinde, V. and Massou, S. (2020) Exact Soliton-Like Spherical Symmetric Solutions of the Heisenberg-Ivanenko Type Nonlinear Spinor Field Equation in Gravitational Theory. Journal of Applied Mathematics and Physics, 8, 1236-1254. doi: 10.4236/jamp.2020.87094.
References

[1]   Shikin, G.N. (1995) Theory of Solitons in General Relativity. URSS, Moscow.

[2]   Adomou, A. and Shikin, G.N. (1998) Exact Static Plane Symmetric Solutions to the Nonlinear Spinor Field Equations in the Gravitational Theory. Gravitation and Cosmology, 4, 107-113.

[3]   Saha, B. and Shikin, G.N. (2003) Plane-Symmetric Solitons of Spinor and Scalar Fields. Czechoslovak Journal of Physics, 54, 597-620.
https://doi.org/10.1023/B:CJOP.0000029690.61308.a5

[4]   Adanhoumè, A., Adomou, A., Codo, F.P. and Hounkonnou, M.N. (2012) Nonlinear Spinor Field Equations in Gravitational Theory: Spherical Symmetric Soliton-Like Solutions. Journal of Modern Physics, 3, 935-942.
https://doi.org/10.4236/jmp.2012.39122

[5]   Adomou, A., Edou, J. and Massou, S. (2019) Plane Symmetric Solutions to the Nonlinear Spinor Field Equations in General Relativity Theory. Journal of Modern Physics, 10, 1222-1234.
https://doi.org/10.4236/jmp.2019.1010081

[6]   Adomou, A., Edou, J. and Massou, S. (2019) Soliton-Like Spherical Symmetric Solutions of the Nonlinear Spinor Field Equations depending on the Invariant I_P in the General Relativity Theory. Journal of Applied Mathematics and Physics, 7, 2018-2835.

[7]   Massou, S., Adomou, A. and Edou, J. (2019) Soliton-Like Spherical Symmetric Solutions of the Nonlinear Spinor Field Equations in General Relativity. International Journal of Applied Mathematics and Theoretical Physics, 5, 118-128.

[8]   Katzin, G.H., Livine, J. and Davis, W.R. (1969) Curvature Collineation: A Fundamental Symmetry Property of the Space-Times of the General Relativity Defined by the Vanishing Lie Derivative of the Riemann Curvature Tensor. Journal of Mathematical Physics, 10, 617-620.
https://doi.org/10.1063/1.1664886

[9]   Katzin, G.H., Livine, J. and Davis, W.R. (1970) Groups of Curvature Collineation in Riemannian Space-Times Which Admit Fields of Parallel Vectors. Journal of Mathematical Physics, 11, 1578-1580.
https://doi.org/10.1063/1.1665297

[10]   Katzin, G.H. and Livine, J. (1971) Applications of Lie Derivatives to Symmetries, Geodesic Mappings, and First Integrals in Riemannian Spaces. Colloquium Mathematicum, 26, 21-38.
https://doi.org/10.4064/cm-26-1-21-38

[11]   Norris, L.K., Green, L.H. and Davis, W.R. (1977) Fluid Space-Times Including Electromagnetic Fields Admitting Symmetry Mappings Belonging to the Family of Contracted Ricci Collineations. Journal of Mathematical Physics, 18, 1305-1311.
https://doi.org/10.1063/1.523420

[12]   Bogoliliubov, N.N. and Shirkov, D.V. (1976) Introduction to the Theory of Quantized Fields. Nauka, Moscow.

[13]   Brill, D. and Wheeler, J. (1957) Interaction of Neutrinos and Gravitational Fields. Reviews of Modern Physics, 29, 465.
https://doi.org/10.1103/RevModPhys.29.465

[14]   Zhelnorovich, V.A. (1982) Spinor Theory and Its Applications in Physics and Mechanics. Nauka, Moscow.

[15]   Adomou, A., Alvarado, R. and Shikin, G.N. (1995) Nonlinear Spinor Field Equations in Gravitational Theory. Izvestiya Vuzov, Fizika, 8, 63-68.

 
 
Top