Back
 ENG  Vol.12 No.6 , June 2020
Comparative Study by Simulation of Interlocking and Ordinary Building Blocks under Static Loads
Abstract: In order to recommend the use of the masonry of chipboards with eviscerated bed joints and hollow vertical joints, we did a comparative study using simulation of the behavior of walls with traditional blocs and those of the new model of blocs. Thus, using Solidworks, we built up walls of 2.40 m length and 1.30m height following strictly the real constraints of elevation. Using finite elements method, the meshing, loading and the observation of the behavior are done through CosmosWorks. We can define a study used by Solidworks and Cosmos Works interface, and introduce parameters of walls; the meshing is then done (here we have volumic elements with three noses); then the big rigidity matrix is defined; the equations are also defined and solved and results are presented in numerical and graphical form. Since that form of results is not easy to analyse, we passed them to MATLAB in order to have usual curves more easily to analyse. The difficulty here is based on the conception of geometry of piece which must have same constraints and dimensions corresponding exactly to the real model. The other difficulty is to define parameters to use for a heterogeneous material like masonry. Once those difficulties are solved, the logical follows fully the steps of finite elements method until the solution in terms of noses repartition constraints, displacements and deformations. Then, we simulated the behavior on vertical static load, vertical static load and horizontal applied load and composed loads (vertical and horizontal) which are real conditions generally known in masonry walls. It has been shown that the new kind of masonry has a better behavior than the traditional one when loaded in its plan; in contrary, the behavior is less when loaded in the perpendicular plan.
Cite this paper: Mousi, J. and Adjovi, E. (2020) Comparative Study by Simulation of Interlocking and Ordinary Building Blocks under Static Loads. Engineering, 12, 356-381. doi: 10.4236/eng.2020.126028.
References

[1]   INS (2001) Pauvreté, habitat et cadre de vie au Cameroun en 2001. Deuxièmeenquête Camerounaiseauprès des ménages, ECAM II.

[2]   Adjovi, E., Ayina, O. and Bikoun, J. (2010) Conception and Estimation of Total Dry Cost Based on Matrix Calculation. Laboratoired’ Energétique et Mécanique Appliquée (LEMA)-Béninet Laboratoire de Mécanique, Matériaux, Structures et Productique (LM2SP), Douala.

[3]   Houngbo, G. and Karimou, S. (2005) Contribution à la réduction du coût du gros-œuvre et à la protection de l’environnementcôtier: Utilisation du sable lagunaire et de blocs spéciauxdans la réalisation des maçonneriesenaggloméréscreux de 15 cmd’épaisseur. Mémoire de fin d’étudessoutenu à l’Ecolepolytechniqued’ Abomey—Calavi, département de génie civil. Benin.

[4]   Bikoun, J. (2006) Modélisationnumérique du comportementmécanique des maçonneriesenagglomérésautobloquants à joints verticaux secs et joints horizontauxévidés. mémoire de DEA, Université de Douala.

[5]   Cruz Diaz, J., Sellier, A., Capra, B., Delmotte, P., Rivillon, P. and Mebarki, A. (2002) Resistance of Masonry Infill Walls to Racking Loading: Simplified Model and Experimental Validation. Masonry International, 15, 59-86.

[6]   Delmotte, P., Rivillon, P., Wesierski, V. and Hurez, M. (2003) Etudes des murs de contreventementenmaçonnerie de blocs creuxenbéton. Cahiers du CSTB, livraison 445, cahier 3491.

[7]   Bikoun, J. (2006) Modélisationnumérique du comportementmécanique des maçonneriesenagglomérésautobloquants à joints verticaux secs et joints horizontauxévidés. mémoire de DEA, Université de Douala.

[8]   Colliat, J.-B., Davenne, L. and Ibrahimbegovic, A. (2002) Modélisationjusqu’à rupture des mursenmaçonnerie chargés dansleur plan. Revue Française de Génie Civil, 6, 593-606.
https://doi.org/10.1080/12795119.2002.9692390

[9]   Zienkiewicz, D.C. (1990) The Finite Element Method. 4th Edition, McGraw Hill, Boston.

[10]   Perales, R. (2007) Modélisation du comportementmécanique par élémentsdiscrets des ouvragesmaçonnéstridimensionnels. Contribution à la définition d’éléments de contacts surfaciques. Thèsedoctorat, Université Montpellier II.

[11]   Pande, G.N., Liang, J.X. and Middleton, J. (1990) Equivalent Elastic Modulo for Brick Masonry. Computers and Geotechnics, 8, 243-265.
https://doi.org/10.1016/0266-352X(89)90045-1

[12]   Papa, E. and Nappi, A. (1993) A Numerical Approach for the Analysis of Masonry Structures. Masonry International, 7, No. 1.

[13]   Chopra, A.K. and Chintanapakdee, C. (2003) Inelastic Deformation Ratios for Design and Evaluation of Structures: Single Degree of Freedom Bilinear Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, Report 2003-09, 81 p.

[14]   Cruz Diaz, J., Sellier, A., Capra, B., Delmotte, P., Rivillon, P. and Mebarki, A. (2001) Modélisationsimplifiée du comportement à rupture des murs. Revue Française de Génie Civil, 5, 613-627.
https://doi.org/10.1080/12795119.2001.9692714

[15]   Bui, T.T. (2013) Etude expérimentale et numérique du comportement des voiles enmaçonneriesoumis à un chargement hors plan. Thèsedoctorat, Institut National des Sciences Appliquées de Lyon, France.

[16]   Dhanasekar, M., Page, A.W. and Kleenan, P.W. (1985) The Failure of Brick Masonry under Biaxial Stresses. Proceedings of the Institution of Civil Engineers, 79, 295-313.
https://doi.org/10.1680/iicep.1985.992

[17]   Lourenço, P.B., Oliveira, D.V., Roca, P. and Orduna, A. (2005) Dry Joint Stone Masonry Subjected to In-Plane Combined Loading. Journal of Structural Engineering, 131, 1665-1673.
https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1665)

 
 
Top