Back
 EPE  Vol.12 No.6 , June 2020
Perovskite Self-Passivation with PCBM for Small Open-Circuit Voltage Loss
Abstract: It is well known that [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is a common n-type passivation material in PSCs, usually used as an interface modification layer. However, PCBM is extremely expensive and is not suitable for future industrialization. Herein, the various concentrations of PCBM as an additive are adopted for PSCs. It not only avoids the routine process of spin coating the multi-layer films, but also reduces the PCBM material and cost. Meanwhile, PCBM can passivate the grain surface and modulate morphology of perovskite films. Furthermore, the most important optical parameters of solar cells, the current density (Jsc), fill factor (FF), open-circuit voltage (Voc) and power conversion efficiencies (PCE) were improved. Especially, when the PCBM doping ratio in CH3NH3PbI3 (MAPbI3) precursor solution was 1 wt%, the device obtained the smallest Voc decay (less than 1%) in the p-i-n type PSCs with poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) as hole transport layer (HTL) and fullerene (C60) as electron transport layer (ETL). The PSCs Voc stability improvement is attributed to enhanced crystallinity of photoactive layer and decreased non-radiative recombination by PCBM doping in the perovskites.
Cite this paper: Zhu, X. , Zhao, X. , Li, L. , Peng, Y. , Wei, W. , Zhang, X. , Su, M. , Wang, Y. , Chen, Z. , Sun, W. (2020) Perovskite Self-Passivation with PCBM for Small Open-Circuit Voltage Loss. Energy and Power Engineering, 12, 257-272. doi: 10.4236/epe.2020.126016.
References

[1]   Dong, Q.F., Fang, Y.J., Shao, Y.C., Mulligan, P., Qiu, J., Cao, L. and Huang, J.S. (2015) Electron-Hole Diffusion Lengths > 175 μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science, 347, 967-970.
https://doi.org/10.1126/science.aaa5760

[2]   Zhao, Y. and Zhu, K. (2016) Organic-Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications. Chemical Society Review, 45, 655-689.
https://doi.org/10.1039/C4CS00458B

[3]   Yang, W.S., Park, B.W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H. and Seok, S.I. (2017) Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Science, 356, 1376-1379.
https://doi.org/10.1126/science.aan2301

[4]   Wu, W.-Q. and Wang, L.Z. (2019) A 3D Hybrid Nanowire/Microcuboid Optoelectronic Electrode for Maximised Light Harvesting in Perovskite Solar Cells. Journal of Materials Chemistry, 7, 932-939.
https://doi.org/10.1039/C8TA09806A

[5]   Liu M., Johnston, M.B. and Snaith, H.J.J.N. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature, 501, 395-398.
https://doi.org/10.1038/nature12509

[6]   Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., et al. (2015) Low Trap-State Density and Long Carrier Diffusion in Organolead Trihalide Perovskite Single Crystals. Science, 347, 519-522.
https://doi.org/10.1126/science.aaa2725

[7]   Im, J.-H., Jang, I.-H., Pellet, N., Gratzel, M. and Park, N.-G. (2014) Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells. Nature Nanotechnology, 9, 927-932.
https://doi.org/10.1038/nnano.2014.181

[8]   Fan, J., Jia, B. and Gu, M. (2014) Perovskite-Based Low-Cost and High-Efficiency Hybrid Halide Solar Cells. Photonics Research, 2, 111-120.
https://doi.org/10.1364/PRJ.2.000111

[9]   Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.
https://doi.org/10.1021/ja809598r

[10]   National Renewable Energy Laboratory (NREL) Best Research-Cell Efficiencies.
https://www.nrel.gov/pv/cell-efficiency.html

[11]   Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G. and Yang, Y. (2013) Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 136, 622-625.
https://doi.org/10.1021/ja411509g

[12]   Meng, L., You, J., Guo, T.-F. and Yang, Y. (2015) Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Accounts of Chemical Research, 49, 155-165.
https://doi.org/10.1021/acs.accounts.5b00404

[13]   Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X. and You, J. (2016) Enhanced Electron Extraction Using SnO2 for High-Efficiency Planar-Structure HC(NH2)2PbI3-Based Perovskite Solar Cells. Nature Energy 2, Article No. 16177.
https://doi.org/10.1038/nenergy.2016.177

[14]   Seo, J., Park, S., Kim, Y.C., Jeon, N.J., Noh, J.H., Yoon, S.C. and Seok, S.I. (2014) Benefits of Very Thin PCBM and LiF Layers for Solution-Processed p-i-n Perovskite Solar Cells. Energy and Environmental Science, 7, 2642-2646.
https://doi.org/10.1039/C4EE01216J

[15]   Liu, Z., Zhu, A., Cai, F., Tao, L., Zhou, Y., Zhao, Z., Chen, Q., Cheng, Y.-B. and Zhou, H.P. (2017) Nickel Oxide Nanoparticles for Efficient Hole Transport in p-i-n and n-i-p Perovskite Solar Cells. Journal of Materials Chemistry, 5, 6597-6605.
https://doi.org/10.1039/C7TA01593C

[16]   Kim, H.-S. and Park, N.-G. (2014) Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. Journal of Physical Chemistry Letter, 5, 2927-2934.
https://doi.org/10.1021/jz501392m

[17]   Liu, D., Li, S., Zhang, P., Wang, Y., Zhang, R., Sarvari, H., Wang, F., Wu, J., Wang, Z. and Chen, Z.D. (2017) Efficient Planar Heterojunction Perovskite Solar Cells with Li-Doped Compact TiO2 Layer. Nano Energy, 31, 462-468.
https://doi.org/10.1016/j.nanoen.2016.11.028

[18]   Liu, D., Li, Y., Yuan, J., Hong, Q., Shi, G., Yuan, D., Wei, J., Huang, C., Tang, J. and Fung, M.-K. (2017) Improved Performance of Inverted Planar Perovskite Solar Cells with F4-TCNQ Doped PEDOT: PSS Hole Transport Layers. Journal of Materials Chemistry, 5, 5701-5708.
https://doi.org/10.1039/C6TA10212C

[19]   Zhao, Q., Wu, R., Zhang, Z., Xiong, J., He, Z., Fan, B., Dai, Z., Yang, B., Xue, X., et al. (2019) Achieving Efficient Inverted Planar Perovskite Solar Cells with Nondoped PTAA as a Hole Transport Layer. Organic Electronics, 71, 106-112.
https://doi.org/10.1016/j.orgel.2019.05.019

[20]   Yang, S., Dai, J., Yu, Z., Shao, Y., Zhou, Y., Xiao, X., Zeng, X.C. and Huang, J.J. (2019) Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. Journal of the American Chemical Society, 141, 5781-5787.
https://doi.org/10.1021/jacs.8b13091

[21]   Xu, L., Chen, X., Jin, J., Liu, W., Dong, B., Bai, X., Song, H. and Reiss, P. (2019) Inverted Perovskite Solar Cells Employing Doped NiO Hole Transport Layers: A Review. Nano Energy, 63, Article ID: 103860.
https://doi.org/10.1016/j.nanoen.2019.103860

[22]   Li, M., Xu, X., Xie, Y., Li, H.-W., Ma, Y., Cheng, Y. and Tsang, S.-W. (2019) Improving the Conductivity of Sol-Gel Derived NiOx with a Mixed Oxide Composite to Realize over 80% Fill Factor in Inverted Planar Perovskite Solar Cells. Journal of Materials Chemistry, 7, 9578-9586.
https://doi.org/10.1039/C8TA10821H

[23]   Arora, N., Dar, M.I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S.M. and Gratzel, M. (2017) Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater than 20%. Science, 358, 768-771.
https://doi.org/10.1126/science.aam5655

[24]   Yu, Z. and Sun, L.C. (2018) Inorganic Hole-Transporting Materials for Perovskite Solar Cells. Small Methods, 2, Article ID: 1700280.
https://doi.org/10.1002/smtd.201700280

[25]   Sun, W., Ye, S., Rao, H., Li, Y., Liu, Z., Xiao, L., Chen, Z., Bian, Z. and Huang, C. (2016) Room-Temperature and Solution-Processed Copper Iodide as the Hole Transport Layer for Inverted Planar Perovskite Solar Cells. Nanoscale, 8, 15954-15960.
https://doi.org/10.1039/C6NR04288K

[26]   Bryant, D., Wheeler, S., O’Regan, B.C., Watson, T., Barnes, P.R., Worsley, D. and Durrant, J. (2015) Observable Hysteresis at Low Temperature in “Hysteresis Free” Organic-Inorganic Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 6, 3190-3194.
https://doi.org/10.1021/acs.jpclett.5b01381

[27]   Xu, J., Buin, A., Ip, A.H., Li, W., Voznyy, O., Comin, R., Yuan, M., Jeon, S., Ning, Z., et al. (2015) Perovskite-Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes. Nature Communications, 6, Article No. 7081.
https://doi.org/10.1038/ncomms8081

[28]   Shao, Y., Xiao, Z., Bi, C., Yuan, Y. and Huang, J. (2014) Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nature Communications, 5, Article No. 5784.
https://doi.org/10.1038/ncomms6784

[29]   Chiang, C.-H. and Wu, C.-G. (2016) Bulk Heterojunction Perovskite-PCBM Solar Cells with High Fill Factor. Nature Photonics, 10, 196-200.
https://doi.org/10.1038/nphoton.2016.3

[30]   Shockley, W. and Queisser, H.J. (1961) Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 32, 510-519.
https://doi.org/10.1063/1.1736034

[31]   Chen, C., Song, Z., Xiao, C., Zhao, D., Shrestha, N., Li, C., Yang, G., Yao, F., Zheng, X., et al. (2019) Achieving a High Open-Circuit Voltage in Inverted Wide-Bandgap Perovskite Solar Cells with a Graded Perovskite Homojunction. Nano Energy, 61, 141-147.
https://doi.org/10.1016/j.nanoen.2019.04.069

[32]   Choi, K., Lee, J., Kim, H.I., Park, C.W., Kim, G.-W., Choi, H., Park, S., Park, S.A. and Park, T.J.E. (2018) Thermally Stable, Planar Hybrid Perovskite Solar Cells with High Efficiency. Energy and Environmental Science, 11, 3238-3247.
https://doi.org/10.1039/C8EE02242A

[33]   Yang, B., Dyck, O., Poplawsky, J., Keum, J., Puretzky, A., Das, S., Ivanov, I., Rouleau, C., Duscher, G., Geohegan, D. and Xiao, K. (2015) Perovskite Solar Cells with near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions. Journal of the American Chemical Society, 137, 9210-9213.
https://doi.org/10.1021/jacs.5b03144

[34]   Wu, W.-Q., Wang, Q., Fang, Y., Shao, Y., Tang, S., Deng, Y., Lu, H., Liu, Y., Li, T., Yang, Z., Gruverman, A. and Huang, J. (2018) Molecular Doping Enabled Scalable Blading of Efficient Hole-Transport-Layer-Free Perovskite Solar Cells. Nature Communications, 9, Article No. 1625.
https://doi.org/10.1038/s41467-018-04028-8

[35]   Hou, F., Su, Z., Jin, F., Yan, X., Wang, L., Zhao, H., Zhu, J., Chu, B. and Li, W. (2015) Efficient and Stable Planar Heterojunction Perovskite Solar Cells with an MoO3/PEDOT: PSS Hole Transporting Layer. Nanoscale, 7, 9427-9432.
https://doi.org/10.1039/C5NR01864A

[36]   Zuo, C. and Ding, L. (2017) Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells. Advanced Energy Materials, 7, Article ID: 1601193.
https://doi.org/10.1002/aenm.201601193

[37]   Yan, W., Li, Y., Li, Y., Ye, S., Liu, Z., Wang, S., Bian, Z. and Huang, C. (2015) High-Performance Hybrid Perovskite Solar Cells with Open Circuit Voltage Dependence on Hole-Transporting Materials. Nano Energy, 16, 428-437.
https://doi.org/10.1016/j.nanoen.2015.07.024

[38]   Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., Sum, T.C. and Lam, Y.M. (2014) The Origin of High Efficiency in Low-Temperature Solution-Processable Bilayer Organometal Halide Hybrid Solar Cells. Energy and Environmental Science, 7, 399-407.
https://doi.org/10.1039/C3EE43161D

[39]   D’innocenzo, V., Grancini, G., Alcocer, M.J., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J. and Petrozza, A. (2014) Excitons versus Free Charges in Organo-Lead Tri-Halide Perovskites. Nature Communications, 5, Article No. 3586.
https://doi.org/10.1038/ncomms4586

[40]   Liu, M., Chen, Z., Yang, Y., Yip, H.-L. and Cao, Y. (2019) Reduced Open-Circuit Voltage Loss for Highly Efficient Low-Bandgap Perovskite Solar Cells via Suppression of Silver Diffusion. Journal of Materials Chemistry A, 7, 17324-17333.
https://doi.org/10.1039/C9TA04366G

[41]   Yuan, J., Huang, T., Cheng, P., Zou, Y., Zhang, H., Yang, J.L., Chang, S.-Y., Zhang, Z., Huang, W., et al. (2019) Enabling Low Voltage Losses and High Photocurrent in Fullerene-Free Organic Photovoltaics. Nature Communications, 10, Article No. 570.
https://doi.org/10.1038/s41467-019-08386-9

[42]   Li, W., Hendriks, K.H., Furlan, A., Wienk, M.M. and Janssen, R.A.J. (2015) High Quantum Efficiencies in Polymer Solar Cells at Energy Losses below 0.6 eV. Journal of the American Chemical Society, 137, 2231-2234.
https://doi.org/10.1021/ja5131897

[43]   Zhao, Y., Li, Q., Zhou, W., Hou, Y., Zhao, Y., Fu, R., Yu, D., Liu, X. and Zhao, Q. (2019) Double-Side-Passivated Perovskite Solar Cells with Ultra-Low Potential Loss. Solar RRL, 3, Article ID: 1800296.
https://doi.org/10.1002/solr.201800296

 
 
Top