[1] Dong, Q.F., Fang, Y.J., Shao, Y.C., Mulligan, P., Qiu, J., Cao, L. and Huang, J.S. (2015) Electron-Hole Diffusion Lengths > 175 μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science, 347, 967-970.
https://doi.org/10.1126/science.aaa5760
[2] Zhao, Y. and Zhu, K. (2016) Organic-Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications. Chemical Society Review, 45, 655-689.
https://doi.org/10.1039/C4CS00458B
[3] Yang, W.S., Park, B.W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., Shin, S.S., Seo, J., Kim, E.K., Noh, J.H. and Seok, S.I. (2017) Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Science, 356, 1376-1379.
https://doi.org/10.1126/science.aan2301
[4] Wu, W.-Q. and Wang, L.Z. (2019) A 3D Hybrid Nanowire/Microcuboid Optoelectronic Electrode for Maximised Light Harvesting in Perovskite Solar Cells. Journal of Materials Chemistry, 7, 932-939.
https://doi.org/10.1039/C8TA09806A
[5] Liu M., Johnston, M.B. and Snaith, H.J.J.N. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature, 501, 395-398.
https://doi.org/10.1038/nature12509
[6] Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., et al. (2015) Low Trap-State Density and Long Carrier Diffusion in Organolead Trihalide Perovskite Single Crystals. Science, 347, 519-522.
https://doi.org/10.1126/science.aaa2725
[7] Im, J.-H., Jang, I.-H., Pellet, N., Gratzel, M. and Park, N.-G. (2014) Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells. Nature Nanotechnology, 9, 927-932.
https://doi.org/10.1038/nnano.2014.181
[8] Fan, J., Jia, B. and Gu, M. (2014) Perovskite-Based Low-Cost and High-Efficiency Hybrid Halide Solar Cells. Photonics Research, 2, 111-120.
https://doi.org/10.1364/PRJ.2.000111
[9] Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.
https://doi.org/10.1021/ja809598r
[10] National Renewable Energy Laboratory (NREL) Best Research-Cell Efficiencies.
https://www.nrel.gov/pv/cell-efficiency.html
[11] Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G. and Yang, Y. (2013) Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 136, 622-625.
https://doi.org/10.1021/ja411509g
[12] Meng, L., You, J., Guo, T.-F. and Yang, Y. (2015) Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Accounts of Chemical Research, 49, 155-165.
https://doi.org/10.1021/acs.accounts.5b00404
[13] Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X. and You, J. (2016) Enhanced Electron Extraction Using SnO2 for High-Efficiency Planar-Structure HC(NH2)2PbI3-Based Perovskite Solar Cells. Nature Energy 2, Article No. 16177.
https://doi.org/10.1038/nenergy.2016.177
[14] Seo, J., Park, S., Kim, Y.C., Jeon, N.J., Noh, J.H., Yoon, S.C. and Seok, S.I. (2014) Benefits of Very Thin PCBM and LiF Layers for Solution-Processed p-i-n Perovskite Solar Cells. Energy and Environmental Science, 7, 2642-2646.
https://doi.org/10.1039/C4EE01216J
[15] Liu, Z., Zhu, A., Cai, F., Tao, L., Zhou, Y., Zhao, Z., Chen, Q., Cheng, Y.-B. and Zhou, H.P. (2017) Nickel Oxide Nanoparticles for Efficient Hole Transport in p-i-n and n-i-p Perovskite Solar Cells. Journal of Materials Chemistry, 5, 6597-6605.
https://doi.org/10.1039/C7TA01593C
[16] Kim, H.-S. and Park, N.-G. (2014) Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. Journal of Physical Chemistry Letter, 5, 2927-2934.
https://doi.org/10.1021/jz501392m
[17] Liu, D., Li, S., Zhang, P., Wang, Y., Zhang, R., Sarvari, H., Wang, F., Wu, J., Wang, Z. and Chen, Z.D. (2017) Efficient Planar Heterojunction Perovskite Solar Cells with Li-Doped Compact TiO2 Layer. Nano Energy, 31, 462-468.
https://doi.org/10.1016/j.nanoen.2016.11.028
[18] Liu, D., Li, Y., Yuan, J., Hong, Q., Shi, G., Yuan, D., Wei, J., Huang, C., Tang, J. and Fung, M.-K. (2017) Improved Performance of Inverted Planar Perovskite Solar Cells with F4-TCNQ Doped PEDOT: PSS Hole Transport Layers. Journal of Materials Chemistry, 5, 5701-5708.
https://doi.org/10.1039/C6TA10212C
[19] Zhao, Q., Wu, R., Zhang, Z., Xiong, J., He, Z., Fan, B., Dai, Z., Yang, B., Xue, X., et al. (2019) Achieving Efficient Inverted Planar Perovskite Solar Cells with Nondoped PTAA as a Hole Transport Layer. Organic Electronics, 71, 106-112.
https://doi.org/10.1016/j.orgel.2019.05.019
[20] Yang, S., Dai, J., Yu, Z., Shao, Y., Zhou, Y., Xiao, X., Zeng, X.C. and Huang, J.J. (2019) Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. Journal of the American Chemical Society, 141, 5781-5787.
https://doi.org/10.1021/jacs.8b13091
[21] Xu, L., Chen, X., Jin, J., Liu, W., Dong, B., Bai, X., Song, H. and Reiss, P. (2019) Inverted Perovskite Solar Cells Employing Doped NiO Hole Transport Layers: A Review. Nano Energy, 63, Article ID: 103860.
https://doi.org/10.1016/j.nanoen.2019.103860
[22] Li, M., Xu, X., Xie, Y., Li, H.-W., Ma, Y., Cheng, Y. and Tsang, S.-W. (2019) Improving the Conductivity of Sol-Gel Derived NiOx with a Mixed Oxide Composite to Realize over 80% Fill Factor in Inverted Planar Perovskite Solar Cells. Journal of Materials Chemistry, 7, 9578-9586.
https://doi.org/10.1039/C8TA10821H
[23] Arora, N., Dar, M.I., Hinderhofer, A., Pellet, N., Schreiber, F., Zakeeruddin, S.M. and Gratzel, M. (2017) Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized Efficiencies Greater than 20%. Science, 358, 768-771.
https://doi.org/10.1126/science.aam5655
[24] Yu, Z. and Sun, L.C. (2018) Inorganic Hole-Transporting Materials for Perovskite Solar Cells. Small Methods, 2, Article ID: 1700280.
https://doi.org/10.1002/smtd.201700280
[25] Sun, W., Ye, S., Rao, H., Li, Y., Liu, Z., Xiao, L., Chen, Z., Bian, Z. and Huang, C. (2016) Room-Temperature and Solution-Processed Copper Iodide as the Hole Transport Layer for Inverted Planar Perovskite Solar Cells. Nanoscale, 8, 15954-15960.
https://doi.org/10.1039/C6NR04288K
[26] Bryant, D., Wheeler, S., O’Regan, B.C., Watson, T., Barnes, P.R., Worsley, D. and Durrant, J. (2015) Observable Hysteresis at Low Temperature in “Hysteresis Free” Organic-Inorganic Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 6, 3190-3194.
https://doi.org/10.1021/acs.jpclett.5b01381
[27] Xu, J., Buin, A., Ip, A.H., Li, W., Voznyy, O., Comin, R., Yuan, M., Jeon, S., Ning, Z., et al. (2015) Perovskite-Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes. Nature Communications, 6, Article No. 7081.
https://doi.org/10.1038/ncomms8081
[28] Shao, Y., Xiao, Z., Bi, C., Yuan, Y. and Huang, J. (2014) Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nature Communications, 5, Article No. 5784.
https://doi.org/10.1038/ncomms6784
[29] Chiang, C.-H. and Wu, C.-G. (2016) Bulk Heterojunction Perovskite-PCBM Solar Cells with High Fill Factor. Nature Photonics, 10, 196-200.
https://doi.org/10.1038/nphoton.2016.3
[30] Shockley, W. and Queisser, H.J. (1961) Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 32, 510-519.
https://doi.org/10.1063/1.1736034
[31] Chen, C., Song, Z., Xiao, C., Zhao, D., Shrestha, N., Li, C., Yang, G., Yao, F., Zheng, X., et al. (2019) Achieving a High Open-Circuit Voltage in Inverted Wide-Bandgap Perovskite Solar Cells with a Graded Perovskite Homojunction. Nano Energy, 61, 141-147.
https://doi.org/10.1016/j.nanoen.2019.04.069
[32] Choi, K., Lee, J., Kim, H.I., Park, C.W., Kim, G.-W., Choi, H., Park, S., Park, S.A. and Park, T.J.E. (2018) Thermally Stable, Planar Hybrid Perovskite Solar Cells with High Efficiency. Energy and Environmental Science, 11, 3238-3247.
https://doi.org/10.1039/C8EE02242A
[33] Yang, B., Dyck, O., Poplawsky, J., Keum, J., Puretzky, A., Das, S., Ivanov, I., Rouleau, C., Duscher, G., Geohegan, D. and Xiao, K. (2015) Perovskite Solar Cells with near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions. Journal of the American Chemical Society, 137, 9210-9213.
https://doi.org/10.1021/jacs.5b03144
[34] Wu, W.-Q., Wang, Q., Fang, Y., Shao, Y., Tang, S., Deng, Y., Lu, H., Liu, Y., Li, T., Yang, Z., Gruverman, A. and Huang, J. (2018) Molecular Doping Enabled Scalable Blading of Efficient Hole-Transport-Layer-Free Perovskite Solar Cells. Nature Communications, 9, Article No. 1625.
https://doi.org/10.1038/s41467-018-04028-8
[35] Hou, F., Su, Z., Jin, F., Yan, X., Wang, L., Zhao, H., Zhu, J., Chu, B. and Li, W. (2015) Efficient and Stable Planar Heterojunction Perovskite Solar Cells with an MoO3/PEDOT: PSS Hole Transporting Layer. Nanoscale, 7, 9427-9432.
https://doi.org/10.1039/C5NR01864A
[36] Zuo, C. and Ding, L. (2017) Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells. Advanced Energy Materials, 7, Article ID: 1601193.
https://doi.org/10.1002/aenm.201601193
[37] Yan, W., Li, Y., Li, Y., Ye, S., Liu, Z., Wang, S., Bian, Z. and Huang, C. (2015) High-Performance Hybrid Perovskite Solar Cells with Open Circuit Voltage Dependence on Hole-Transporting Materials. Nano Energy, 16, 428-437.
https://doi.org/10.1016/j.nanoen.2015.07.024
[38] Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., Sum, T.C. and Lam, Y.M. (2014) The Origin of High Efficiency in Low-Temperature Solution-Processable Bilayer Organometal Halide Hybrid Solar Cells. Energy and Environmental Science, 7, 399-407.
https://doi.org/10.1039/C3EE43161D
[39] D’innocenzo, V., Grancini, G., Alcocer, M.J., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J. and Petrozza, A. (2014) Excitons versus Free Charges in Organo-Lead Tri-Halide Perovskites. Nature Communications, 5, Article No. 3586.
https://doi.org/10.1038/ncomms4586
[40] Liu, M., Chen, Z., Yang, Y., Yip, H.-L. and Cao, Y. (2019) Reduced Open-Circuit Voltage Loss for Highly Efficient Low-Bandgap Perovskite Solar Cells via Suppression of Silver Diffusion. Journal of Materials Chemistry A, 7, 17324-17333.
https://doi.org/10.1039/C9TA04366G
[41] Yuan, J., Huang, T., Cheng, P., Zou, Y., Zhang, H., Yang, J.L., Chang, S.-Y., Zhang, Z., Huang, W., et al. (2019) Enabling Low Voltage Losses and High Photocurrent in Fullerene-Free Organic Photovoltaics. Nature Communications, 10, Article No. 570.
https://doi.org/10.1038/s41467-019-08386-9
[42] Li, W., Hendriks, K.H., Furlan, A., Wienk, M.M. and Janssen, R.A.J. (2015) High Quantum Efficiencies in Polymer Solar Cells at Energy Losses below 0.6 eV. Journal of the American Chemical Society, 137, 2231-2234.
https://doi.org/10.1021/ja5131897
[43] Zhao, Y., Li, Q., Zhou, W., Hou, Y., Zhao, Y., Fu, R., Yu, D., Liu, X. and Zhao, Q. (2019) Double-Side-Passivated Perovskite Solar Cells with Ultra-Low Potential Loss. Solar RRL, 3, Article ID: 1800296.
https://doi.org/10.1002/solr.201800296