Back
 JAMP  Vol.8 No.6 , June 2020
Collocation Method for Solving the Generalized KdV Equation
Abstract: In this work, we have obtained numerical solutions of the generalized Korteweg-de Vries (GKdV) equation by using septic B-spline collocation finite element method. The suggested numerical algorithm is controlled by applying test problems including; single soliton wave. Our numerical algorithm, attributed to a Crank Nicolson approximation in time, is unconditionally stable. To control the performance of the newly applied method, the error norms, L2 and L and invariants I1, I2 and I3 have been calculated. Our numerical results are compared with some of those available in the literature.
Cite this paper: Geyikli, T. (2020) Collocation Method for Solving the Generalized KdV Equation. Journal of Applied Mathematics and Physics, 8, 1123-1134. doi: 10.4236/jamp.2020.86085.
References

[1]   Korteweg, D.J. and de Vries, G. (1895) On the Change of Form of Long Waves Advancing in a Rectangular Canal and on a New Type of Long Stationary Waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39, 422-443.
https://doi.org/10.1080/14786449508620739

[2]   Zabusky, N.J. (1967) A Synergetic Approach to Problem of Nonlinear Dispersive Wave Propagation and Interaction. In: Ames, W., Ed., Proceedings of the Symposium Nonlinear Partial Differential Equation, Academic Press, 223-258.

[3]   Fornberg, B. and Whitham, G.B. (1978) A Numerical and Theoretical Study of Certain Nonlinear Wave Phenomena. Philosophical Transactions of the Royal Society A, 289, 373-404.
https://doi.org/10.1098/rsta.1978.0064

[4]   Zabusky, N.J. and Kruskal, M.D. (1965) Interaction of Solitons in a Collisionless plasma and the Recurrence of Initial States. Physical Review Letters, 15, 240-243.
https://doi.org/10.1103/PhysRevLett.15.240

[5]   Gardner, C.S., Green, J.M., Kruskal, M.D. and Miura, R.M. (1967) Method for Solving Korteweg-de Vries Equation. Physical Review Letters, 19, 1095-1097.
https://doi.org/10.1103/PhysRevLett.19.1095

[6]   Goda, K. (1975) On Instability of Some Finite Difference Schemes for Korteweg-de Vries Equation. Journal of the Physical Society of Japan, 39, 229-236.
https://doi.org/10.1143/JPSJ.39.229

[7]   Vliengenthart, A.C. (1971) On Finite Difference Methods for the Korteweg-de Vries Equation. Journal of Engineering Mathematics, 5, 137-155.
https://doi.org/10.1007/BF01535405

[8]   Soliman, A.A. (2004) Collocation Solution of the Korteweg-de Vries Equation Using Septic Splines. International Journal of Computer Mathematics, 81, 325-331.
https://doi.org/10.1080/00207160410001660817

[9]   Irk, D., Dağ, I. and Saka, B. (2006) A Small Time Solutions for the Korteweg--de Vries Equation Using Spline Approximation. Applied Mathematics and Computation, 173, 834-846.
https://doi.org/10.1016/j.amc.2005.04.018

[10]   Canıvar, A., Sari, M. and Dağ, I. (2010) A Taylor-Galerkin Finite Element Method for the KdV Equation Using Cubic B-Splines. Physica B: Condensed Matter, 405, 3376-3383.
https://doi.org/10.1016/j.physb.2010.05.008

[11]   Aksan, E.N. and Özdeş, A. (2006) Numerical Solution of Korteweg-de Vries Equation by Galerkin B-Spline Finite Element Method. Applied Mathematics and Computation, 175, 1256-1265.
https://doi.org/10.1016/j.amc.2005.08.038

[12]   Irk, D. (2017) Quintic B-Spline Galerkin Method for the KdV Equation. Anadolu University Journal of Science and Technology B-Theoritical Sciences, 5, 111-119.

[13]   Ersoy, O. and Dağ, I. (2015) The Exponential Cubic B-Spline Algorithm for Korteweg-de Vries Equation. Advances in Numerical Analysis, 2015, Article ID: 367056.
https://doi.org/10.1155/2015/367056

[14]   Dağ, I. and Dereli, Y. (2008) Numerical Solutions of KdV Equation Using Radial Basis Function. Applied Mathematical Modelling, 32, 535-546.
https://doi.org/10.1016/j.apm.2007.02.001

[15]   Kutluay, S., Bahadir, A.R. and Özdeş, A. (2000) A Small Time Solutions for the Korteweg-de Vries Equation. Applied Mathematics and Computation, 107, 203-210.
https://doi.org/10.1016/S0096-3003(98)10119-4

[16]   Saka, B. (2009) Cosine Expansion-Based Differential Quadrature Method for Numerical Solution of the KdV Equation. Chaos, Solitons and Fractals, 40, 2181-2190.
https://doi.org/10.1016/j.chaos.2007.10.004

[17]   Kaya, D. (2005) An Application for the Higher Order Modified KdV Equation by Decomposition Method. Communications in Nonlinear Science and Numerical Simulation, 10, 693-702.
https://doi.org/10.1016/j.cnsns.2003.12.009

[18]   Biswas, A. (2010) 1-Soliton Solution of the K(m, n) Equation with Generalized Evolution and Time-Dependent Damping and Dispersion. Computers and Mathematics with Applications, 59, 2536-2540.

[19]   Raslan, K.R. and Baghdady, H.A. (2015) A Finite Difference Scheme for the Modified Korteweg-de Vries Equation. General Mathematics Notes, 27, 101-113.

[20]   Raslan, K.R. and Baghdady, H.A. (2014) New Algorithm for Solving the Modified Korteweg-de Vries (mKdV) Equation. International Journal of Research and Reviews in Applied Sciences, 18, 59-64.

[21]   Wazwaz, A.M. (2014) A Variety of (3+1)-Dimensional mKdV Equations Derived by Using the mKdV Recursion Operator. Computers and Fluids, 93, 41-45.
https://doi.org/10.1016/j.compfluid.2014.01.010

[22]   Wazwaz, A.M. (2015) New (3+1)-Dimensional Nonlinear Evolution Equations with mKdV Equation Constituting Its Main Part: Multiple Soliton Solutions. Chaos, Solitons and Fractals, 76, 93-97.
https://doi.org/10.1016/j.chaos.2015.03.018

[23]   Ak, T., Karakoc, S.B.G. and Biswas, A. (2017) Application of Petrov-Galerkin Finite Element Method to Shallow Water Waves Model: Modified Korteweg-de Vries Equation. Scientia Iranica B, 24, 1148-1159.
https://doi.org/10.24200/sci.2017.4096

[24]   Ak, T., Karakoc, S.B.G. and Biswas, A. (2017) A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation. Iranian Journal of Science and Technology, Transactions A: Science, 41, 1109-1121.
https://doi.org/10.1007/s40995-017-0238-5

[25]   Bracken, P. (2005) Specific Solutions of the Generalized Korteweg-de Vries Equation with Possible Physical Applications. Central European Journal of Physics, 3, 127-138.
https://doi.org/10.2478/BF02476511

[26]   H. Liu and Yi, N. (2016) A Hamiltonian Preserving Discontinuous Galerkin Method for the Generalized Korteweg-de Vries Equation. Journal of Computational Physics, 321, 776-796.
https://doi.org/10.1016/j.jcp.2016.06.010

[27]   Lai, X., Cao, Q. and Twizell, E.H. (2005) The Global Domain of Attraction and the Initial Value Problems of a Kind of GKdV Equations. Chaos, Solitons and Fractals, 23, 1613-1628.
https://doi.org/10.1016/S0960-0779(04)00413-8

[28]   Garcia Alvarado, M.G. and Omel’yanov, G.A. (2012) Interaction of Solitary Waves for the Generalized KdV Equation. Communications in Nonlinear Science and Numerical Simulation, 17, 3204-3218.
https://doi.org/10.1016/j.cnsns.2011.12.001

[29]   Sepulveda, M. and Villagran, O.V. (2008) Numerical Methods for Generalized KdV Equations. In: Anais do XXXI Congresso Nacional de Matematica Aplicada e Computacional, 894-900.

[30]   Ak, T., Triki, H., Dhawan, S., Bhowmik, S.K., Moshokoae, S.P., Ullah, M.Z. and Biswas, A. (2017) Computational Analysis of Shallow Water Waves with Korteweg-de Vries Equation. Scientia Iranica B, 25, 2582-2597.

[31]   Ismail, H.N.A., Raslan, K.R. and Salem, G.S.E. (2004) Solitary Wave Solutions for the General KDV Equation by Adomian Decomposition Method. Applied Mathematics and Computation, 154, 17-29.
https://doi.org/10.1016/S0096-3003(03)00686-6

[32]   Prenter, P.M. (1975) Splines and Variational Methods. John Wiley & Sons, New York.

[33]   Miura, R.M., Gardner, C.S. and Kruskal, M.D. (1968) Korteweg-de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion. Journal of Mathematical Physics, 9, 1204.
https://doi.org/10.1063/1.1664701

[34]   Miura, R.M. (1976) The Korteweg-de Vries Equation: A Survey of Results. SIAM Review, 18, 412-459.
https://doi.org/10.1137/1018076

 
 
Top