[1] Zhao, M., Zhang, L. and Zhu, J. (2011) Dynamics of a Host-Parasitoid Model with Prolonged Diapause for Parasitoid. Communications in Nonlinear Science and Numerical Simulation, 16, 455-462.
https://doi.org/10.1016/j.cnsns.2010.03.011
[2] Flores, J.D. (2011) Mathematical Modeling Chapter III Nicholson-Bailey Model. PhD.
[3] Hone, A.N.W., Irle, M.V. and Thurura, G.W. (2010) On the Neimark-Sacker Bifurcation in a Discrete Predator-Prey System. Journal of Biological Dynamics, 4, 594-606. https://doi.org/10.1080/17513750903528192
[4] Azizi, T. and Kerr, G. (2020) Synchronized Cycles of Generalized Nicholson-Bailey Model. American Journal of Computational Mathematics, 10, 147-166.
https://doi.org/10.4236/ajcm.2020.101009
[5] Ricker, W.E. (1954) Stack and Recruitment. Journal of the Fisheries Research Board of Canada, 11, 559-623.
https://doi.org/10.1139/f54-039
[6] Azizi, T. and Kerr, G. (2020) Chaos Synchronization in Discrete-Time Dynamical Systems with Application in Population Dynamics. Journal of Applied Mathematics and Physics, 8, 406-423. https://doi.org/10.4236/jamp.2020.83031
[7] Azizi, T. (2015) Dynamics of a Discrete-Time Plant-Herbivore Model. Caspian Journal of Mathematical Sciences, 4, 241-256.
[8] Elaydi, S. (2008) Discrete Chaos: With Applications in Science and Engineering. 2nd Edition, Chapman and Hall/CRC, Boca Raton, London, New York.
[9] Beddington, J.R., Free, C.A. and Lawton, J.H. (1975) Dynamic Complexity in Predator-Prey Models Framed in Difference Equations. Nature, 255, 58-60.
https://doi.org/10.1038/255058a0
[10] Burgic, D., Kalabusic, S. and Kulenovic, M.R.S. (2008) Non Hyperbolic Dynamics for Competitive Systems in the Plane and Global Period-Doubling Bifurcations. Advances in Dynamical Systems and Applications, 3, 229-249.
[11] Murray, J.D. (1993) Mathematical Biology. Springer-Verlag, New York.
https://doi.org/10.1007/978-3-662-08542-4
[12] Liu, X. and Xiao, D. (2007) Complex Dynamic Behaviour of a Discrete Time Predator-Prey System. Chaos, Solitons and Fractals, 32, 80-94.
https://doi.org/10.1016/j.chaos.2005.10.081
[13] Hilborn, R.C. (2000) Chaos and Nonlinear Dynamics. 2nd Edition, Oxford University Press, New York.
https://doi.org/10.1093/acprof:oso/9780198507239.001.0001
[14] Kaitala, V., Ylikarjula, J. and Heino, M. (2000) Non-Unique Population Dynamics: Basic Patterns. Ecological Modelling, 135, 127-134.
https://doi.org/10.1016/S0304-3800(00)00357-4
[15] Kon, R. (2006) Multiple Attractors in Host—Parasitoid Interactions: Coexistence and Extinction. Mathematical Biosciences, 201, 1383-1394.
https://doi.org/10.1016/j.mbs.2005.12.010
[16] Kon, R. and Takeuchi, Y. (2001) Permanence of Host-Parasitoid Systems. Nonlinear Analysis—Theory Methods and Applications, 47, 89-101.
https://doi.org/10.1016/S0362-546X(01)00273-5
[17] Yun, K., Armbruster, D. and Yang, K. (2008) Dynamics of a Plant—Herbivore Model. Journal of Biological Dynamics, 2, 89-101.
https://doi.org/10.1080/17513750801956313