Back
 JAMP  Vol.8 No.6 , June 2020
A Hybrid Backward Euler Control Volume Method to Solve the Concentration-Dependent Solid-State Diffusion Problem in Battery Modeling
Abstract: Several efficient analytical methods have been developed to solve the solid-state diffusion problem, for constant diffusion coefficient problems. However, these methods cannot be applied for concentration-dependent diffusion coefficient problems and numerical methods are used instead. Herein, grid-based numerical methods derived from the control volume discretization are presented to resolve the characteristic nonlinear system of partial differential equations. A novel hybrid backward Euler control volume (HBECV) method is presented which requires only one iteration to reach an implicit solution. The HBECV results are shown to be stable and accurate for a moderate number of grid points. The computational speed and accuracy of the HBECV, justify its use in battery simulations, in which the solid-state diffusion coefficient is a strong function of the concentration.
Cite this paper: Chayambuka, K. , Mulder, G. , Danilov, D. , Notten, P. (2020) A Hybrid Backward Euler Control Volume Method to Solve the Concentration-Dependent Solid-State Diffusion Problem in Battery Modeling. Journal of Applied Mathematics and Physics, 8, 1066-1080. doi: 10.4236/jamp.2020.86083.
References

[1]   Eisler, M.N. (2016) Cold War Computers, California Supercars, and the Pursuit of Lithium-Ion Power. Physics Today, 69, 30-36.
https://doi.org/10.1063/PT.3.3296

[2]   Whittingham, M.S. (1976) Electrical Energy Storage and Intercalation Chemistry. Science, 192, 1126-1127.
https://doi.org/10.1126/science.192.4244.1126

[3]   NobelPrize.org. Nobel Media AB (2019) The Nobel Prize in Chemistry 2019.
https://www.nobelprize.org/prizes/chemistry/2019/press-release/

[4]   Liu, S. (2006) An Analytical Solution to Li/Li+ Insertion into a Porous Electrode. Solid State Ionics, 177, 53-58.
https://doi.org/10.1016/j.ssi.2005.09.053

[5]   Chayambuka, K., Mulder, G., Danilov, D.L. and Notten, P.H.L. (2019) A Modified Pseudo-Steady-State Analytical Expression for Battery Modeling. Solid State Communications, 296, 49-53.
https://doi.org/10.1016/j.ssc.2019.04.011

[6]   Ramadesigan, V., Boovaragavan, V., Pirkle, J.C. and Subramanian, V.R. (2010) Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models. Journal of The Electrochemical Society, 157, A854-A860.
https://doi.org/10.1149/1.3425622

[7]   Subramanian, V.R., Diwakar, V.D. and Tapriyal, D. (2005) Efficient Macro-Micro Scale Coupled Modeling of Batteries. Journal of The Electrochemical Society, 152, A2002-A2008.
https://doi.org/10.1149/1.2032427

[8]   Subramanian, V.R., Ritter, J.A. and White, R.E. (2001) Approximate Solutions for Galvanostatic Discharge of Spherical Particles I. Constant Diffusion Coefficient. Journal of The Electrochemical Society, 148, E444-E449.
https://doi.org/10.1149/1.1409397

[9]   Zhang, Q. and White, R.E. (2007) Comparison of Approximate Solution Methods for the Solid Phase Diffusion Equation in a Porous Electrode Model. Journal of Power Sources, 165, 880-886.
https://doi.org/10.1016/j.jpowsour.2006.12.056

[10]   Mao, J., Tiedemann, W. and Newman, J. (2014) Simulation of Temperature Rise in Li-Ion Cells at Very High Currents. Journal of Power Sources, 271, 444-454.
https://doi.org/10.1016/j.jpowsour.2014.08.033

[11]   Kazemi, N., Danilov, D.L., Haverkate, L., Dudney, N.J., Unnikrishnan, S. and Notten, P.H.L. (2019) Modeling of All-Solid-State Thin-Film Li-Ion Batteries: Accuracy Improvement. Solid State Ionics, 334, 111-116.
https://doi.org/10.1016/j.ssi.2019.02.003

[12]   Raijmakers, L.H.J., Danilov, D.L., Eichel, R.-A. and Notten, P.H.L. (2020) An Advanced All-Solid-State Li-Ion Battery Model. Electrochimica Acta, 330, 135147.
https://doi.org/10.1016/j.electacta.2019.135147

[13]   Christensen, J. and Newman, J. (2006) Stress Generation and Fracture in Lithium Insertion Materials. Journal of Solid State Electrochemistry, 10, 293-319.
https://doi.org/10.1007/s10008-006-0095-1

[14]   Motupally, S., Streinz, C.C. and Weidner, J.W. (1995) Proton Diffusion in Nickel Hydroxide Films Measurement of the Diffusion Coefficient as a Function of State of Charge. Journal of the Electrochemical Society, 142, 1401-1408.
https://doi.org/10.1149/1.2048589

[15]   Motupally, S., Streinz, C.C. and Weidner, J.W. (1998) Proton Diffusion in Nickel Hydroxide Prediction of Active Material Utilization. Journal of The Electrochemical Society, 145, 29-34.
https://doi.org/10.1149/1.1838205

[16]   Shakoor, R.A., Seo, D.-H., Kim, H., Park, Y.-U., Kim, J., Kim, S.-W., Gwon, H., Lee, S. and Kang, K. (2012) A Combined First Principles and Experimental Study on Na3V2(PO4)2F3 for Rechargeable Na Batteries. Journal of Materials Chemistry, 22, 20535-20541.
https://doi.org/10.1039/c2jm33862a

[17]   Liu, Z., Hu, Y.-Y., Dunstan, M.T., Huo, H., Hao, X., Zou, H., Zhong, G., Yang, Y. and Grey, C.P. (2014) Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)2F3. Chemistry of Materials, 26, 2513-2521.
https://doi.org/10.1021/cm403728w

[18]   Ford Versypt, A.N. and Braatz, R.D. (2014) Analysis of Finite Difference Discretization schemes for DIFFUSION in Spheres with Variable Diffusivity. Computers & Chemical Engineering, 71, 241-252.
https://doi.org/10.1016/j.compchemeng.2014.05.022

[19]   Langtangen, H.P. (2013) Finite Difference Methods for Diffusion Processes. University of Oslo, Oslo.

[20]   Urisanga, P.C., Rife, D., De, S. and Subramanian, V.R. (2015) Efficient Conservative Reformulation Schemes for Lithium Intercalation. Journal of The Electrochemical Society, 162, A852-A857.
https://doi.org/10.1149/2.0061506jes

[21]   Zeng, Y., Albertus, P., Klein, R., Chaturvedi, N., Kojic, A., Bazant, M.Z. and Christensen, J. (2013) Efficient Conservative Numerical Schemes for 1D Nonlinear Spherical Diffusion Equations with Applications in Battery Modeling. Journal of The Electrochemical Society, 160, A1565-A1571.
https://doi.org/10.1149/2.102309jes

[22]   Taussky, O. (1949) A Recurring Theorem on Determinants. The American Mathematical Monthly, 56, 672-676.
https://doi.org/10.1080/00029890.1949.11990209

[23]   Patankar, S. (2018) Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton.
https://doi.org/10.1201/9781482234213

[24]   Higham, N.J. (1986) Efficient Algorithms for Computing the Condition Number of a Tridiagonal Matrix. SIAM Journal on Scientific and Statistical Computing, 7, 150-165.
https://doi.org/10.1137/0907011

[25]   Conte, S.D. and De Boor, C. (2017) Elementary Numerical Analysis: An Algorithmic Approach. SIAM, Philadelphia.
https://doi.org/10.1137/1.9781611975208

[26]   Wu, S.-L., Zhang, W., Song, X., Shukla, A.K., Liu, G., Battaglia, V. and Srinivasan, V. (2012) High Rate Capability of Li(Ni1/3Mn1/3Co1/3)O2 Electrode for Li-Ion Batteries. Journal of the Electrochemical Society, 159, A438-A444.
https://doi.org/10.1149/2.062204jes

 
 
Top