Back
 MSA  Vol.11 No.6 , June 2020
Dielectric Properties of Multi-Layers Hexagonal Boron Nitride
Abstract: A higher value of the dielectric constant of h-BN makes it quite favourable material in energy storing device. The variation in dielectric constant was observed as a function of thickness. In this research work multilayers of Hexagonal Boron Nitride (h-BN) was fabricated by using the Chemical exfoliation method. Two solvents Dimethylformamide (DMF) and Isopropyl Alcohol (IPA) were used for the exfoliation of h-BN. Successful sonication of hexagonal boron nitride led to the formation of Boron Nitride nanosheets (BNNs). The stable dispersibility of h-BN in Dimethylformamide and Isopropyl Alcohol was confirmed by UV Visible Spectroscopy, X-ray diffraction (XRD) and Scanning electron microscopy (SEM) confirm the mono crystallite structure (002) and nanoflakes like morphology of h-BN respectively. This appropriate strategy offered a feasible route to produce multilayer of hexagonal boron nitride. After the successful fabrication of h-BN multilayers its dielectric properties were calculated by using LCR meter. Profilometer revealed the variation in thickness and value of Dielectric constant was calculated by using its formula.
Cite this paper: Khalid, M. , Riaz, I. , Jalil, R. , Mahmood, U. , Mir, R. and Sohail, H. (2020) Dielectric Properties of Multi-Layers Hexagonal Boron Nitride. Materials Sciences and Applications, 11, 339-346. doi: 10.4236/msa.2020.116023.
References

[1]   Koizumi, S., Murakami, T., Inuzuka, T. and Suzuki, K. (1990) Epitaxial Growth of Diamond Thin Films on Cubic Boron Nitride {111} Surfaces by DC Plasma Chemical Vapor Deposition. Applied Physics Letters, 57, 563-565.
https://doi.org/10.1063/1.103647

[2]   Taniguchi, T., Kimoto, K., Tansho, M., Horiuchi, S. and Yamaoka, S. (2003) Phase Transformation of Amorphous Boron Nitride under High Pressure. Chemistry of Materials, 15, 2744-2751.
https://doi.org/10.1021/cm021763j

[3]   Wang, J., Ma, F. and Sun, M. (2017) Graphene, Hexagonal Boron Nitride, and Their Heterostructures: Properties and Applications. RSC Advances, 7, 16801-16822.
https://doi.org/10.1039/C7RA00260B

[4]   Bao, J., Jeppson, K., Edwards, M., Fu, Y., Ye, L., Lu, X. and Liu, J. (2016) Synthesis and Applications of Two-Dimensional Hexagonal Boron Nitride in Electronics Manufacturing. Electronic Materials Letters, 12, 1-16.
https://doi.org/10.1007/s13391-015-5308-2

[5]   Hod, O. (2012) Graphite and Hexagonal Boron-Nitride Have the Same Interlayer Distance. Why? Journal of Chemical Theory and Computation, 8, 1360-1369.
https://doi.org/10.1021/ct200880m

[6]   Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V. and Geim, A.K. (2005) Two-Dimensional Atomic Crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451-10453.
https://doi.org/10.1073/pnas.0502848102

[7]   Park, J.H., Choi, S.H., Zhao, J., Song, S., Yang, W., Kim, S.M., Kim, K.K. and Lee, Y.H. (2016) Thickness-Controlled Multilayer Hexagonal Boron Nitride Film Prepared by Plasma-Enhanced Chemical Vapor Deposition. Current Applied Physics, 16, 1229-1235.
https://doi.org/10.1016/j.cap.2016.03.025

[8]   Gao, G., Gao, W., Cannuccia, E., Taha-Tijerina, J., Balicas, L., Mathkar, A., Narayanan, T.N., Liu, Z., Gupta, B.K., Peng, J., Yin, Y., Rubio, A. and Ajayan, P.M. (2012) Artificially Stacked Atomic Layers: Toward New Van der waals Solids. Nano Letters, 12, 3518-3525.
https://doi.org/10.1021/nl301061b

[9]   Zhang, B., Wu, Q., Yu, H., Bulin, C., Sun, H., Li, R., Ge, X. and Xing, R. (2017) High-Efficient Liquid Exfoliation of Boron Nitride Nanosheets Using Aqueous Solution of Alkanolamine. Nanoscale Research Letters, 12, 596.
https://doi.org/10.1186/s11671-017-2366-4

[10]   Zhou, K.G., Mao, N.N., Wang, H.X., Peng, Y. and Zhang, H.L. (2011) A Mixed-Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues. Angewandte Chemie International Edition, 50, 10839-10842.
https://doi.org/10.1002/anie.201105364

[11]   Lin, Y., Williams, T.V. and Connell, J.W. (2010) Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets. The Journal of Physical Chemistry Letters, 1, 277-283.
https://doi.org/10.1021/jz9002108

[12]   Cui, Z., Oyer, A.J., Glover, A.J., Schniepp, H.C. and Adamson, D.H. (2014) Large Scale Thermal Exfoliation and Functionalization of Boron Nitride. Small, 10, 2352-2355.
https://doi.org/10.1002/smll.201303236

[13]   Rafiei-Sarmazdeh, Z., Jafari, S.H., Ahmadi, S.J. and Zahedi-Dizaji, S.M. (2016) Large-Scale Exfoliation of Hexagonal Boron Nitride with Combined Fast Quenching and Liquid Exfoliation Strategies. Journal of Materials Science, 51, 3162-3169.
https://doi.org/10.1007/s10853-015-9626-4

[14]   Xu, M., Liang, T., Shi, M. and Chen, H. (2013) Graphene-Like Two-Dimensional Materials. Chemical Reviews, 113, 3766-3798.
https://doi.org/10.1021/cr300263a

[15]   Shaffner, T.J. and Van Veld, R.D. (1971) “Charging” Effects in the Scanning Electron Microscope. Journal of Physics E, 4, 633-637.
https://doi.org/10.1088/0022-3735/4/9/002

[16]   Kim, S.M., Hsu, A., Park, M.H., Chae, S.H., Yun, S.J., Lee, J.S., Cho, D.H., Fang, W., Lee, C., Palacios, T., Dresselhaus, M., Kim, K.K., Lee, Y.H. and Kong, J. (2015) Synthesis of Large-Area Multilayer Hexagonal Boron Nitride for High Material Performance. Nature Communications, 6, 8662.
https://doi.org/10.1038/ncomms9662

[17]   Laturia, A., Van de Put, M.L. and Vandenberghe, W.G. (2018) Dielectric Properties of Hexagonal Boron Nitride and Transition Metal Dichalcogenides: From Monolayer to Bulk. NPJ 2D Materials and Applications, 2, 1-7.
https://doi.org/10.1038/s41699-018-0050-x

[18]   Ahmed, F., Heo, S., Yang, Z., Ali, F., Ra, C.H., Lee, H.I., Taniguchi, T., Hone, J., Lee, B.H. and Yoo, W.J. (2018) Dielectric Dispersion and High Field Response of Multilayer Hexagonal Boron Nitride. Advanced Functional Materials, 28, Article ID: 1804235.
https://doi.org/10.1002/adfm.201804235

 
 
Top