Back
 MSA  Vol.11 No.5 , May 2020
Thermo-Stamping Process of Glass and Carbon-Fibre Reinforced Polymer Composites
Abstract: In this work, manufacturing tools for thermoplastic (TP) composites have been developed. The chosen process involves the stacking alternately of oriented dry fabrics and TP films and does not use semi-products in order to reduce material costs. This study was specifically directed towards optimizing the impregnation of continuous glass and carbon fibres reinforcing two TP amorphous matrices, the polyphenylsulfone (PPSU) and polyetherimide (PEI), to obtain semi-finished products employed for aeronautical structures. The impregnation quality of inter and intra-yarns is analyzed and validated by optical and scanning micrographic observations conducted with an optical and a Scanning Electron Microscopies (SEM), respectively. The study showed that besides the process parameters and porosity distribution in the core of warp yarns, the impregnation quality depends on the surface properties of constituents. Desizing treatment has been carried out to improve the wettability of fibres by the TP matrices.
Cite this paper: Harizi, W. , Aboura, Z. , Deléglise-Lagardère, M. , Briand, V. (2020) Thermo-Stamping Process of Glass and Carbon-Fibre Reinforced Polymer Composites. Materials Sciences and Applications, 11, 319-337. doi: 10.4236/msa.2020.115022.
References

[1]   Spruiell, J.E. and Janke, C.J. (2004) A Review of the Measurement and Development of Crystallinity and Its Relation to Properties in Neat Poly(phenylene sulfide) and Its Fiber Reinforced Composites. Technical Report ORNL/TM-2004/304. Metals and Ceramics Division, US Department of Energy, Washington DC.
https://doi.org/10.2172/885940

[2]   Offringa, A.R. (1996) Thermoplastic Composites, Rapid Processing Applications. Composites: Part A, 27, 329-336.
https://doi.org/10.1016/1359-835X(95)00048-7

[3]   Hou, M. (1996) Stamp Forming of Fabric-Reinforced Thermoplastic Composites. Polymer Composites, 17, 596-603.
https://doi.org/10.1002/pc.10649

[4]   Diaz, J. and Rubio, L. (2003) Developments to Manufacture Structural Aeronautical Parts in Carbon Fibre Reinforced Thermoplastic Materials. Journal of Materials Processing Technology, 143-144, 342-346.
https://doi.org/10.1016/S0924-0136(03)00450-3

[5]   Ning, H., Vaidya, U., Janowski, G.M. and Husman, G. (2007) Design. Manufacture and Analysis of a Thermoplastic Composite Frame Structure for Mass Transit. Composite Structures, 80, 105-116.
https://doi.org/10.1016/j.compstruct.2006.04.036

[6]   Vieille, B., Al-bouy, W., Chevalier, L. and Taleb, L. (2013) About the Influence of Stamping on Thermoplastic-Based Composites for Aeronautical Applications. Composites: Part B, 45, 821-834.
https://doi.org/10.1016/j.compositesb.2012.07.047

[7]   Vieille, B., Casado, V.M. and Bouvet, C. (2014) Influence of Matrix Toughness and Ductility on the Compression After-Impact Behavior of Woven-Ply Thermoplastic- and Thermosetting-Composites: A Comparative Study. Composite Structures, 110, 207-218.
https://doi.org/10.1016/j.compstruct.2013.12.008

[8]   Denault, J. and Dumouchel, M. (1998) Consolidation Process of PEEK/Carbon Composite for Aerospace Applications. Advanced Performance Materials, 5, 83-96.
https://doi.org/10.1023/A:1008638105370

[9]   Cogswell, F.N. (1991) The Experience of Thermoplastic Structural Composites during Processing. Composites Manufacturing, 2, 208-216.
https://doi.org/10.1016/0956-7143(91)90142-4

[10]   Wang, C. and Sun, C.T. (1997) Experimental Characterization of Constitutive Models for PEEK Thermoplastic Composite at Heating Stage during Forming. Journal of Composite Materials, 31, 1480-1506.
https://doi.org/10.1177/002199839703101502

[11]   Hwang, S.F. and Hwang, K.J. (2002) Stamp Forming of Locally Heated Thermoplastic Composites. Composites Part A: Applied Science and Manufacturing, 33, 669-676.
https://doi.org/10.1016/S1359-835X(02)00004-0

[12]   Van West, B.P., Pipes, R.B. and Advani, S.G. (1991) The Consolidation of Commingled Thermoplastic Fabrics. Polymer Composites, 12, 417-427.
https://doi.org/10.1002/pc.750120607

[13]   Chen, Q., Boisse, P., Park, C.H., Saouab, A. and Bréard, J. (2011) Intra/Inter-Ply Shear Behaviors of Continuous Fiber Reinforced Thermoplastic Composites in Thermoforming Processes. Composite Structures, 93, 1692-1703.
https://doi.org/10.1016/j.compstruct.2011.01.002

[14]   Sedlacek, T., Hausnerova, B. and Filip, P. (2012) Viscosity Measurements of Polyphen-ylsulfone Melt. In: Recent Researches in Environmental and Geological Sciences, WSEAS Press, Athens, 429-431.

[15]   Manson, J.A. and Seferis, J.C. (1987) Internal Stress Determination by Process Simulated Laminates’ SPE. 45th Annual Technical Conference and Exhibition, Los Angeles, 4-7 May 1987, 1446-1449.

[16]   Chapman, T.J., Gillespie Jr., J.W., Pipes, R.B., Manson, J.A.E. and Seferis, J.C. (1990) Prediction of Process-Induced Residual Stresses in Thermoplastic Composites. Journal of Composite Materials, 24, 616-643.
https://doi.org/10.1177/002199839002400603

[17]   Jeronimidis, G. and Parkyn, A.T. (1988) Residual Stresses in Carbon Fibre Thermoplastic Matrix Laminates. Journal of Composite Materials, 22, 401-415.
https://doi.org/10.1177/002199838802200502

[18]   Hahn, H.T. and Pagano, N.J. (1975) Curing Stresses in Composite Laminates. Journal of Composite Materials, 9, 91-106.
https://doi.org/10.1177/002199837500900110

[19]   Weitsman, Y. (1979) Residual Thermal Stresses Due to Cool-Down of Epoxy-Resin Compo-sites. Journal of Applied Mechanics, 46, 563-567.
https://doi.org/10.1115/1.3424606

[20]   Hahn, H.T. (1976) Residual Stresses in Polymer Matrix Composite Laminates. Journal of Composite Materi-als, 10, 266-278.
https://doi.org/10.1177/002199837601000401

[21]   Tseng, S.-C. and Osswald, T.A. (1994) Prediction of Shrinkage and Warpage of Fiber Reinforced Thermoset Composite Parts. Journal of Reinforced Plastics and Composites, 13, 698-720.
https://doi.org/10.1177/073168449401300803

[22]   Hsiao, S.-W. and Kikuchi, N. (1999) Numerical Analysis and Optimal Design of Compo-site Thermoforming Process. Computer Methods in Applied Mechanics and En-gineering, 177, 1-3.
https://doi.org/10.1016/S0045-7825(98)00273-4

[23]   Berthelot, J.M. (1992) Matériaux Composites—Comportement mécanique et analyse des struc-tures. Masson, Paris.

[24]   Carreau, P.J., De Kee, D.C.R. and Chabra, P.R. (1997) Rheology of Polymeric Systems: Principles and Applications. Munich, New York.

[25]   Frigione, M., Naddeo, C. and Acierno, D. (1996) The Rheological Behavior of Polyetheretherketone (PEEK)/Polyetherimide (PEI) Blends. Journal of Polymer Engineering, 16, 217-229.
https://doi.org/10.1515/POLYENG.1996.16.3.217

[26]   Schell, J.S.U., Renggli, M., van Lenthe, G.H., Müller, R. and Ermanni, P. (2006) Micro-Computed Tomography Determination of Glass Fibre Reinforced Polymer Meso-Structure. Composites Science and Technology, 66, 2016-2022.
https://doi.org/10.1016/j.compscitech.2006.01.003

[27]   Madra, A., El Hajj, N. and Benzeggagh, M. (2014) X-Ray Microtomography Applications for Quantitative and Qualitative Analysis of Porosity in Woven Glass Fiber Rein-forced Thermoplastic. Composites Science and Technology, 95, 50-58.
https://doi.org/10.1016/j.compscitech.2014.02.009

[28]   Mascaro, B. (2006) Caractérisation ultrasonore de la porosité dans les composites. PhD The-sis, UPS, Toulouse, 170.

[29]   Harizi, W., Chaki, S., Bourse, G. and Ourak, M. (2012) Characterization of the Damage Mechanisms in Polymer Composite Ma-terials by Ultrasonic Waves, Acoustic Emission and Infrared Thermography. 15th European Conference on Composite Material, Venice, 24-28 June 2012, 24-28.

[30]   Harizi, W., Chaki, S., Bourse, G. and Ourak, M. (2015) Mechanical Damage Characterization of Glass Fiber-Reinforced Polymer Laminates by Ul-trasonic Maps. Composites Part B: Engineering, 70, 131-137.
https://doi.org/10.1016/j.compositesb.2014.11.014

[31]   Ledru, Y., Pi-quet, R., Michel, L., Schmidt, F. and Berhnart, G. (2009) Quantification 2-D et 3-D de la porosité par analyse d'images dans les matériaux composites stratifiés aéronautiques. Proceeding of Comptes Rendus des JNC 16, Toulouse, June 2009, hal-00386035, 11 p.

[32]   Purslow, D. (1984) On the Optical Assessment of the Void Content in Composite Materials. Composites, 15, 207-210.
https://doi.org/10.1016/0010-4361(84)90276-3

[33]   Russ, J.C. and Dehoff, R.T. (1986) Practical Stereology. 2nd Edition, Plenum Press, New York.
https://doi.org/10.1007/978-1-4899-3533-5

[34]   Aliotti, A. (1996) Caractérisation microstructurale des céramiques par analyse d’images. Spectra Analyse, 188, 34-37.

[35]   Redon, C., Chermant, L., Quenec’h, J.L. and Chermant, J.L. (1997) Caractérisation par analyse d’images de la morphologie de bétons renforcés par des fibres de fonte amorphe. Annales du batiment et des travaux publics, 4, 37-53.

[36]   Shen, H., Oppenheimer, S.M., Dunand, D.C. and Brinson, L.C. (2006) Numerical Modeling of Pore Size and Distribution in Foamed Titanium. Mechanics of Materials, 38, 933-944.
https://doi.org/10.1016/j.mechmat.2005.06.027

 
 
Top