Back
 OJCM  Vol.10 No.2 , April 2020
The Reinforcing Effect of Graphene on the Mechanical Properties of Carbon-Epoxy Composites
Abstract: Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this study, the outstanding GNPs filler was reinforced to the epoxy matrix and carbon fabric/epoxy hybrid composite slabs to enrich their mechanical properties. Graphene nanoplatelets of 0.5, 1, 1.5 and 2 weight percentages were integrated into the epoxy and the physico-mechanical (microstructure, density, tensile, flexural and impact strength) properties were investigated. Furthermore, the mechanical properties of unfilled and 1 wt% GNPs filled carbon fabric/epoxy hybrid composite slabs were investigated. Subsequently, noteworthy improvement in the mechanical properties was conquered for the carbon fabric/epoxy hybrid composites.
Cite this paper: Shivakumar, H. , Renukappa, N. , Shivakumar, K. and Suresha, B. (2020) The Reinforcing Effect of Graphene on the Mechanical Properties of Carbon-Epoxy Composites. Open Journal of Composite Materials, 10, 27-44. doi: 10.4236/ojcm.2020.102003.
References

[1]   üstün, T., Ulus, H., Karabulut, S.E., Eskizeybek, V., Sahin, O.S., Avci, A. and Demir, O. (2016) Evaluating the Effectiveness of Nanofillers in Filament Wound Carbon/Epoxy Multiscale Composite Pipes. Composites Part B: Engineering, 96, 1-6.
https://doi.org/10.1016/j.compositesb.2016.04.031

[2]   Suresha, B., Chandramohan, G. and Renukappa, N.M. (2007) Mechanical and Tribological Properties of Glass-Epoxy Composites with and without Graphite Particulate Filler. Journal of Applied Polymer Science, 103, 2472-2480.
https://doi.org/10.1002/app.25413

[3]   Suresha, B. and Kumar, K.N.S. (2009) Investigations on Mechanical and Two-Body Abrasive Wear Behaviour of Glass/Carbon Fabric Reinforced Vinyl Ester Composites. Materials & Design, 30, 2056-2060.
https://doi.org/10.1016/j.matdes.2008.08.038

[4]   Rafique, I., Kausar, A. and Muhammad, B. (2016) Epoxy Resin Composite Reinforced with Carbon Fiber and Inorganic Filler: Overview on Preparation and Properties. Polymer-Plastics Technology and Engineering, 55, 1653-1672.
https://doi.org/10.1080/03602559.2016.1163597

[5]   Suresha, B., Ramesh, B.N., Subbaya, K.M. and Chandramohan, G. (2010) Mechanical and Three-Body Abrasive Wear Behavior of Carbon-Epoxy Composite with and without Graphite Filler. Journal of Composite Materials, 44, 2509-2519.
https://doi.org/10.1177/0021998310369589

[6]   Suresha, B., Chandramohan, G., Shivakumar, K.N. and Ismail, M. (2008) Mechanical and Three-Body Abrasive Wear Behaviour of Three-Dimensional Glass Fabric Reinforced Vinyl Ester Composite. Materials Science and Engineering: A, 480, 573-579.
https://doi.org/10.1016/j.msea.2007.07.011

[7]   Khashaba, U.A., Aljinaidi, A.A. and Hamed, M.A. (2014) Nanofillers Modification of Epocast 50-A1/946 Epoxy for Bonded Joints. Chinese Journal of Aeronautics, 27, 1288-1300.
https://doi.org/10.1016/j.cja.2014.08.007

[8]   Han, W., Tang, Y. and Ye, L. (2017) Carbon Fibre-Reinforced Polymer Laminates with Nanofiller-Enhanced Multifunctionality. In: The Structural Integrity of Carbon Fiber Composites, Springer, Cham, 171-197.
https://doi.org/10.1007/978-3-319-46120-5_8

[9]   Bhattacharya, M. (2016) Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials, 9, 262.
https://doi.org/10.3390/ma9040262

[10]   Adak, N.C., Chhetri, S., Kim, N.H., Murmu, N.C., Samanta, P. and Kuila, T. (2018) Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite. Journal of Materials Engineering and Performance, 27, 1138-1147.
https://doi.org/10.1007/s11665-018-3201-5

[11]   Park, S.J., Jin, F.L. and Lee, J.R. (2004) Thermal and Mechanical Properties of Tetrafunctional Epoxy Resin Toughened with Epoxidized Soybean Oil. Materials Science and Engineering: A, 374, 109-114.
https://doi.org/10.1016/j.msea.2004.01.002

[12]   May, C. (2018) Epoxy Resins: Chemistry and Technology. Routledge, Abingdon-on-Thames.
https://doi.org/10.1201/9780203756713

[13]   Kurahatti, R.V., Surendranathan, A.O., Srivastava, S., Singh, N., Kumar, A.R. and Suresha, B. (2011) Role of Zirconia Filler on Friction and Dry Sliding Wear Behaviour of Bismaleimide Nanocomposites. Materials & Design, 32, 2644-2649.
http://idr.nitk.ac.in/jspui/handle/123456789/12833
https://doi.org/10.1016/j.matdes.2011.01.030


[14]   Manjunath, M., Renukappa, N.M. and Suresha, B. (2016) Influence of Micro and Nanofillers on Mechanical Properties of Pultruded Unidirectional Glass Fiber Reinforced Epoxy Composite Systems. Journal of Composite Materials, 50, 1109-1121.
https://doi.org/10.1177/0021998315588623

[15]   Udaya Kumar, P.A., Suresha, B., Rajini, N. and Satyanarayana, K.G. (2018) Effect of Treated Coir Fiber/Coconut Shell Powder and Aramid Fiber on Mechanical Properties of Vinyl Ester. Polymer Composites, 39, 4542-4550.
https://doi.org/10.1002/pc.24561

[16]   Suresha, B., Devarajaiah, R.M., Pasang, T. and Ranganathaiah, C. (2013) Investigation of Organo-Modified Montmorillonite Loading Effect on the Abrasion Resistance of Hybrid Composites. Materials & Design, 47, 750-758.
https://doi.org/10.1016/j.matdes.2012.12.056

[17]   Ahmad, M.A., Güven, G.G. and Sarikavakli, N. (2019) Some Features of Doping of Nano-Graphite in Natural Coir Fibre Epoxy Composites. Avrupa Bilim ve Teknoloji Dergisi, 15, 491-498.
https://doi.org/10.31590/ejosat.540021

[18]   Yang, S.Y., Lin, W.N., Huang, Y.L., Tien, H.W., Wang, J.Y., Ma, C.C.M., Li, S.M. and Wang, Y.S. (2011) Synergetic Effects of Graphene Platelets and Carbon Nanotubes on the Mechanical and Thermal Properties of Epoxy Composites. Carbon, 49, 793-803.
https://doi.org/10.1016/j.carbon.2010.10.014

[19]   Pathak, A.K., Borah, M., Gupta, A., Yokozeki, T. and Dhakate, S.R. (2016) Improved Mechanical Properties of Carbon Fiber/Graphene Oxide-Epoxy Hybrid Composites. Composites Science and Technology, 135, 28-38.
https://doi.org/10.1016/j.compscitech.2016.09.007

[20]   Yao, H., Sui, X., Zhao, Z., Xu, Z., Chen, L., Deng, H., Liu, Y. and Qian, X. (2015) Optimization of Interfacial Microstructure and Mechanical Properties of Carbon Fiber/Epoxy Composites via Carbon Nanotube Sizing. Applied Surface Science, 347, 583-590.
https://doi.org/10.1016/j.apsusc.2015.04.146

[21]   Njuguna, J., Pielichowski, K. and Desai, S. (2008) Nanofiller Reinforced Polymer Nanocomposites. Polymers for Advanced Technologies, 19, 947-959.
https://doi.org/10.1002/pat.1074

[22]   Imran, K.A. and Shivakumar, K.N. (2018) Enhancement of Electrical Conductivity of Epoxy Using Graphene and Determination of Their Thermo-Mechanical Properties. Journal of Reinforced Plastics and Composites, 37, 118-133.
https://doi.org/10.1177/0731684417736143

[23]   Du, J. and Cheng, H.M. (2012) The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromolecular Chemistry and Physics, 213, 1060-1077.
https://doi.org/10.1002/macp.201200029

[24]   Lee, C., Wei, X. and Kysar, J.W. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388.
https://doi.org/10.1126/science.1157996

[25]   King, J.A., Klimek, D.R. and Miskioglu, I. (2013) Mechanical Properties of Graphene Nanoplatelet/Epoxy Composites. Journal of Applied Polymer Science, 128, 4217-4223.
https://doi.org/10.1002/app.38645

[26]   Raza, M.A., Westwooda, A.V.K. and Stirling, C. (2012) Effect of Processing Technique on the Transport and Mechanical Properties of Graphite Nanoplatelet/Rubbery Epoxy Composites for Thermal Interface Applications. Materials Chemistry and Physics, 132, 63-73.
https://doi.org/10.1016/j.matchemphys.2011.10.052

[27]   Drzal, L.T. and Fukushima, H. (2017) Exfoliated Graphite Nanoplatelets (xGnP): A Carbon Nanotube Alternative. NSTI-Nanotech, 1, 170-173.
http://www.nsti.org

[28]   Monti, M., Rallini, M. and Puglia, D. (2013) Morphology and Electrical Properties of Graphene-Epoxy Nanocomposites Obtained by Different Solvent Assisted Processing Methods. Composites Part A, 46, 166-172.
https://doi.org/10.1016/j.compositesa.2012.11.005

[29]   Wajid, A.S., Ahmed, H.S.T. and Das, S. (2013) High-Performance Pristine Graphene/Epoxy Composites with Enhanced Mechanical and Electrical Properties. Macromolecular Materials and Engineering, 298, 339-347.
https://doi.org/10.1002/mame.201200043

[30]   Tang, L.C., Wan, Y.J. and Yan, D. (2013) The Effect of Graphene Dispersion on the Mechanical Properties of Graphene/Epoxy Composites. Carbon, 60, 16-27.
https://doi.org/10.1016/j.carbon.2013.03.050

[31]   Wan, Y.J., Gong, L.X., Tang, L.C., Wu, L.B. and Jiang, J.X. (2014) Mechanical Properties of Epoxy Composites Filled with Silane-Functionalized Graphene Oxide. Composites Part A: Applied Science and Manufacturing, 64, 79-89.
https://doi.org/10.1016/j.compositesa.2014.04.023

[32]   Wan, Y.J., Tang, L.C., Gong, L.X., Yan, D., Li, Y.B., Wu, L.B., Jiang, J.X. and Lai, G.Q. (2014) Grafting of Epoxy Chains onto Graphene Oxide for Epoxy Composites with Improved Mechanical and Thermal Properties. Carbon, 69, 467-480.
https://doi.org/10.1016/j.carbon.2013.12.050

[33]   Ghaleb, Z.A., Mariatti, M. and Ariff, Z.M. (2018) Preparation and Properties of Amine Functionalized Graphene Filled Epoxy Thin Film Nano Composites for Electrically Conductive Adhesive. Journal of Materials Science: Materials in Electronics, 29, 3160-3169.
http://ir.unimas.my/id/eprint/19937
https://doi.org/10.1007/s10854-017-8249-8


[34]   Wang, X., Jin, J. and Song, M. (2013b) An Investigation of the Mechanism of Graphene Toughening Epoxy. Carbon, 65, 324-333.
https://doi.org/10.1016/j.carbon.2013.08.032

[35]   Seong, M. and Kim, D.S. (2015) Effects of Facile Amine Functionalization on the Physical Properties of Epoxy/Graphene Nanoplatelets Nanocomposites. Journal of Applied Polymer Science, 132, 42269-42275.
https://doi.org/10.1002/app.42269

[36]   Yavari, F., Rafiee, M.A., Rafiee, J., Yu, Z.Z. and Koratkar, N. (2010) Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites. ACS Applied Materials & Interfaces, 2, 2738-2743.
https://doi.org/10.1021/am100728r

[37]   Bozkurt, E., Kaya, E. and Tanoglu, M. (2007) Mechanical and Thermal Behavior of Non-Crimp Glass Fiber Reinforced Layered Clay/Epoxy Nanocomposites. Composites Science and Technology, 67, 3394-3403.
https://doi.org/10.1016/j.compscitech.2007.03.021

[38]   He, H. and Li, K. (2012) Silane Coupling Agent Modification on Interlaminar Shear Strength of Carbon Fiber/Epoxy/Nano CaCo3 Composites. Polymer Composites, 33, 1755-1758.
https://doi.org/10.1002/pc.22311

[39]   Davis, D.C., Wilkerson, J.W., Zhu, J. and Hadjiev, V.G. (2011) A Strategy for Improving Mechanical Properties of a Fiber Reinforced Epoxy Composite Using Functionalized Carbon Nanotubes. Composites Science and Technology, 71, 1089-1097.
https://doi.org/10.1016/j.compscitech.2011.03.014

[40]   Ashori, A., Rahmani, H. and Bahrami, R. (2015) Preparation and Characterization of Functionalized Graphene Oxide/Carbon Fiber/Epoxy Nanocomposites. Polymer Testing, 48, 82-88.
https://doi.org/10.1016/j.polymertesting.2015.09.010

[41]   Wang, F., Drzal, L.T., Qin, Y. and Huang, Z. (2016) Size Effect of Graphene Nanoplatelets on the Morphology and Mechanical Behavior of Glass Fiber/Epoxy Composites. Journal of Materials Science, 51, 3337-3348.
https://doi.org/10.1007/s10853-015-9649-x

[42]   Qin, W., Vautard, F., Drzal, L.T. and Yu, J. (2015) Mechanical and Electrical Properties of Carbon Fiber Composites with Incorporation of Graphene Nanoplatelets at the Fiber-Matrix Interphase. Composites Part B: Engineering, 69, 335-341.
https://doi.org/10.1016/j.compositesb.2014.10.014

[43]   Zhao, Z., Teng, K., Li, N., Li, X., Xu, Z., Chen, L., Niu, J., Fu, H., Zhao, L. and Liu, Y. (2017) Mechanical, Thermal and Interfacial Performances of Carbon Fiber Reinforced Composites Flavored by Carbon Nanotube in Matrix/Interface. Composite Structures, 159, 761-772.
https://doi.org/10.1016/j.compstruct.2016.10.022

[44]   Zhang, X., Fan, X., Yan, C., Li, H., Zhu, Y., Li, X. and Yu, L., (2012) Interfacial Microstructure and Properties of Carbon Fiber Composites Modified with Graphene Oxide. ACS Applied Materials & Interfaces, 4, 1543-1552.
https://doi.org/10.1021/am201757v

[45]   Keyte, J., Pancholi, K. and Njuguna, J. (2019) Recent Developments in Graphene Oxide/Epoxy Carbon Fiber-Reinforced Composites. Frontiers in Materials, 6, Article No. 224.
https://doi.org/10.3389/fmats.2019.00224

[46]   Gao, B., Zhang, R., He, M., Sun, L., Wang, C., Liu, L., Zhao, L., Cui, H. and Cao, A. (2016) Effect of a Multiscale Reinforcement by Carbon Fiber Surface Treatment with Graphene Oxide/Carbon Nanotubes on the Mechanical Properties of Reinforced Carbon/Carbon Composites. Composites Part A: Applied Science and Manufacturing, 90, 433-440.
https://doi.org/10.1016/j.compositesa.2016.08.012

[47]   Imran, K.A. and Shivakumar, K.N. (2019) Graphene-Modified Carbon/Epoxy Nanocomposites: Electrical, Thermal and Mechanical Properties. Journal of Composite Materials, 53, 93-106.
https://doi.org/10.1177/0021998318780468

[48]   ASTM, D256-10 (2018) Standard Test Methods for Determining the Izod Pendulum Impact Strength of Plastics. ASTM International, West Conshohocken.
https://www.astm.org/Standards/D256

[49]   Jayaseelan, J., Palanisamy, P., Vijayakumar, K.R. and Vinita, A.D.M. (2015) Effect of Graphene Filler Content on Mechanical Strength and Hardness for Goat Hair Fibre Reinforced Epoxy Composites. International Journal of Vehicle Structures & Systems, 7, 165-168.

[50]   Molazemhosseini, A., Tourani, H., Khavandi, A. and Eftekhari Yekta, B. (2013) Tribological Performance of PEEK Based Hybrid Composites Reinforced with Short Carbon Fibers and Nano-Silica. Wear, 303, 397-404.
https://doi.org/10.1016/j.wear.2013.03.019

[51]   Agarwal, G., Patnaik, A. and Sharma, R. (2014) Thermo-Mechanical Properties and Abrasive Wear Behaviour of Silicon Carbide Filled Woven Glass Fiber Composites. Silicon, 6, 155-168.
https://doi.org/10.1007/s12633-014-9184-4

[52]   Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2010) Fracture and Fatigue in Graphene Nanocomposites. Small, 6, 179-183.
https://doi.org/10.1002/smll.200901480

[53]   Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X.R.R.S., Ruoff, R.S. and Nguyen, S.T. (2008) Functionalized Graphene Sheets for Polymer Nanocomposites. Nature Nanotechnology, 3, 327-331.
https://doi.org/10.1038/nnano.2008.96

[54]   Wei, J., Vo, T. and Inam, F. (2015) Epoxy/Graphene Nanocomposites-Processing and Properties: A Review. RSC Advances, 5, 73510-73524.
https://doi.org/10.1039/C5RA13897C

[55]   Liu, Q., Zhou, X., Fan, X., Zhu, C., Yao, X. and Liu, Z. (2012) Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide. Polymer-Plastics Technology and Engineering, 51, 251-256.
https://doi.org/10.1080/03602559.2011.625381

 
 
Top