NS  Vol.1 No.3 , December 2009
Steps to the clinic with ELF EMF
Abstract: There have been many models to identify and analyze low-frequency motions in protein and DNA molecules. It has been successfully used to simulate various low-frequency collective motions in protein and DNA molecules. Low- frequency motions in biomacromolecules origi- nate from two common and intrinsic character-istics; i.e., they contain 1) a series of weak bonds, such as hydrogen bonds, and 2) a sub-stantial mass distributed over the region of these weak bonds. Many biological functions and dynamic mechanisms, including coopera-tive effects have been reported. In this regard, some phenomenological theories were estab-lished. However, differences in experimental outcomes are expected since many factors could influence the outcome of experiments in EMF research. Any effect of EMF has to depend on the energy absorbed by a biological organ-ism and on how the energy is delivered in space and time. Frequency, intensity, exposure dura-tion, and the number of exposure episodes can affect the response, and these factors can inter- act with each other to produce different effects. In addition, in order to understand the biologi- cal consequence of EMF exposure, one must know whether the effect is cumulative, whether compensatory responses result, and when ho-meostasis will break down. Such findings will have great potential for use in translation medi-cine at the clinical level without being invasive.
Cite this paper: nullMadkan, A. , Blank, M. , Elson, E. , Chou, K. , S. Geddis, M. and Goodman, R. (2009) Steps to the clinic with ELF EMF. Natural Science, 1, 157-165. doi: 10.4236/ns.2009.13020.

[1]   M. H. Repacholi and B. Greenebaum, (1999) Interaction of static and extremely low frequency electric and mag-netic fields with living systems: Health effects and re-search needs. Bioelectromagnetics. 20(3), 133-60.

[2]   C. A. L. Bassett, (1995) Bioeletromagnetics in the ser-vice of medicine. Adv Chem, 250, 261-276.

[3]   M. Blank and R. Goodman, (2004) Initial Interactions in Electromagnetic Field-Induced Biosynthesis. J. Cellular Physiology, 199, 359-363.

[4]   M. Blank and R. A. Goodman, (2008) Mechanism for stimulation of biosynthesis by electromagnetic fields: Charge transfer in DNA and base pair separation. Journal of Cellular Physiology.

[5]   H. Ito and C. A. Bassett, (1983) Effect of weak, pulsing electromagnetic fields on neural regeneration in the rat. Clin Orthop Relat Res, 181, 283-290.

[6]   M. Jin, H. Lin, L. Han, M. Opler, S. Maurer, M. Blank, and R. Goodman, (1997) Biological and technical vari-ables in myc expression in HL60 cells exposed to 60 Hz electromagnetic fields. Bioelectrochemistry and Bio-energetics, 44, 111-120.

[7]   F. Shao, K. Augustyn, and J. K. Barton, (2005) Sequence dependence of charge transport through DNA domains. J Am Chem Soc, 127, 17445-17452.

[8]   B. F. Sisken, M. Kanje, G. Lundborg, E. Herbst, and W. Kurtz, (1989) Stimulation o frat sciatic nerve regenera-tion with pulsed electromagnetic fields. Brain Res, 485, 309-316.

[9]   B. F. Sisken, J. Walker, and M. Orgel, (1993) Prospects on clinical applications of electrical stimulation for nerve regeneration. J Cell Biochem, 51, 404-409.

[10]   J. L. Walker, J. M. Evans, P. Meade, P. Resig, and B. F. Sisken, (1994) Gait-stance duration nas a measure of in-jury and recovery in the rat sciatic nerve model. J Neu-rosci Methods, 52, 47-52.

[11]   J. M. Shallom, A. L. DiCarlo, D. Ko, L. M. Penafiel, and A. Nakai, (2002) Microwave exposure induces hsp70 and confers protection against hypoxia in chick embryos. J Cell Biochem, 86, 490-496.

[12]   I. George, M. Geddis, Z. Lill, H. Lin, T. Gomez, M. Blank, M. Oz, and R. Goodman, (2008) Myocardial function improved by electromagnetic fields induction of stress protein hsp70. J Cellular Physiol, 216, 816-823. Published Online: DOI: 10.1002/jcp.21461.

[13]   A. Albertini, B. Zucchini, G. Noera, R. Cadossi, C. P. Napoleone, and A. Pierangeli, (1999) Protective effect of low frequency low energy policy electromagnetic fields on acute experimental myocardial infarcts in rats. Bio-electromagnetics, 20, 372-377.

[14]   A. Di Carlo, J. M. Farrell, and T. Litovitz, (1998) A sim-ple experiment to study electromagnetic field effects: Protection induced by short-term exposures to 60Hz magnetic fields. Bioelectromagnetics, 19, 498-500.

[15]   R. Goodman and A. Henderson, (1988) Exposure of sali-vary gland cells to low frequency electromagnetic fields alters polypeptide synthesis. PNAS, 85, 3928- 3932.

[16]   R. Goodman, C. A. L. Bassett, and A. Henderson, (1983) Pulsing electromagnetic fields induce cellular transcrip-tion. Science, 220, 1283-1285.

[17]   R. Goodman, M. Blank, H. Lin, O. Khorkova, L. Soo, D.Weisbrot, and A. S. Henderson, (1994) Increased lev-els of hsp70 transcripts are induced when cells are ex-posed to low frequency electromagnetic fields. Bio- elec-trochem Bioenerg, 33, 115-120.

[18]   R. Goodman and M. Blank, (1998) Magnetic field stress induces expression of hsp70. Cell Stress and Chaperones, 3, 79-88.

[19]   H. Lin, M. Blank, K. Rossol-Haseroth, and R. Goodman, (2001) Regulating genes with electromagnetic response elements. J Cell Biochem, 81, 143-148.

[20]   H. Lin, M. Head, M. Blank, L. Han, M. Jin, and R. Goodman, (1998) Myc-mediated transactivation of HSP70 expression following exposure to magnetic fields. J Cell Biochem, 69, 181-188.

[21]   R. Palumbo, D. Capasso, F. Brescia, P. Mita, M. Sari, F. Bersani, and M. R. Scarfi, (2006) Effects on apoptosis and reactive oxygen species formation by Jurkat cells exposed to 50 Hz electromagnetic fields. Bioelec- tro-magnetics, 27, 159-162.

[22]   S. Tofani, D. Barone, M. Cintorino, M. M. de Santi, A. Ferrara, R. Orlassino, P. Ossola, F. Perogio, K. Rolfo, and F. Ronchetto, (200l) Static and ELF magnetic fields in-duce tumor growth inhibition and apoptosis. Bioelec- tromagnetics, 22, 419-428.

[23]   E. Elson, (2009) The little explored efficacy of magnetic fields in cancer treatment, and postulation of the me- chanism of action. Electromagnetic Biology and Medi-cine, in press.

[24]   E. D. Kirson, V. Dbaly, F. Tovary?, J. Vymazal, J. F. Soustiel, A. Itzhaki, D. Mordechovich, S. S. Shirley, Z. Gurvich, R. chneiderman, Y. Wasserman, M. Salzberg, B. Ryffel, D. Goldsher, E. Dekel, and Y. Palti, (2007) Alter-nating electric fields arrest cell proliferation in animal tumor models and human brain tumors. PNAS, 104, 10152-10157.

[25]   C. Polk and E. Postow, (1996) Eds. Handbook of Bio-logical Effects of Electromagnetic Fields. 2nd Ed, CRC Press, Chapter 4.

[26]   C. D. William, M. S. Markov, W. E. Hardman, and I. L. Cameron, (2001) Therapeutic electromagnetic field ef-fects on angiogenesis and tumor growth. Anticancer Re-search, 21, 3887-3892.

[27]   R. De Seze, S. Tuffet, J. M. Moreau, and B. Veyret, (2000) Effects of 100 mT time varying margnetic fields on the growth of tumors in mice. Bioelectromagnetics, 21, 107-111.

[28]   I. L. Cameron, L. Z. Sun, N. Short, W. E. Hardman, and C. D. Williams, (2005) Therapeutic electromagnetic field [TEMF] and gamma irradiation on human breast cancer xenograft growth, angiogenesis and metastasis. Cancer Cell International, 5(23).

[29]   D. Kultz, (2005) Molecular and evolutionary basis of the cellular stress response. Ann Rev Physiol, 67, 225-257.

[30]   J. Topol, D. M. Ruden, and C. S. Parker, (1985) Se-quences required for in vitro transcriptional activation of a drosophila hsp70 gene. Cell, 42, 527-537.

[31]   M. T. Santini, A. Ferrante, G. Rainaldi, P. Indovina, P. L. Indovina, (2005) Extremely low frequency magnetic fields and apoptosis: A review. International Journal of Radiation Biology, 81, 1-11.

[32]   A. R. Liboff, (1998) Electric-field ion cyclotron reso- nance. Bioelectromagnetics, 18, 85-87.

[33]   V. V. Lednev, (1993) Possible mechanism for the effect of weak magnetic fields on biological systems: Corre- ction of the basic expression and it consequences. Elec- tricity and Magnetism in Biology and Medicine, Blank, M. Ed. San Francisco Press, San Francisco, 550- 552.

[34]   S. Kwee, P. Raskmark, and S. Velizarov, (2001) Changes in cellular proeins due to environmental non-ionizing ra-diation. I. Heat-shock proteins. Electro- and Magneto- biology, 20, 141-152.

[35]   M. Grattarola , A. Chiabrera , R. Vlvianl , and G. Parodl , (1985) Interactions between weak electromagnetic fields and biosystems: A summary of nine years of research, 4 (1), 211-226.

[36]   L. Michael and S.G. Ernst, (2005) Applied AC and DC magnetic fields cause alterations in the mitotic cycle of early sea urchin embryos. 4(6), 231 – 240.

[37]   E. Elson, (2007) Developmental control in animals and a biological role for DNA charge transfer. Progress in Biophysics & Molecular Biology, 95, 1-15.

[38]   E. J. Merino, A. K. Boal, and J. K. Barton, (2008) Bio-logical contexts for DNA charge transport chemistry. Current Opinion in Chemical Biology, 12, 229-237.

[39]   C. Wan, T. Fiebig, S. O. Kelley, C. R. Treadway, and J. K. Barton, (1999) Femtosecond dynamics of DNA-mediated electron transfer. Proc Nat Acad Sci, USA, 96, 6014- 6019.

[40]   H. Lai and N. P. Singh, (2004) Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ- mental Health Perspectives, 112, 687-94.

[41]   H. Lai and N. P. Singh, (1997) Acute exposure to a 60Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics, 18, 156-165.

[42]   H. Lai and N. P. Singh, (2005) Interaction of microwaves and a temporally incoherent magnetic field on single and double DNA strand breaks in rat brain cells. Electromag Biol Med, 24, 23-29.

[43]   G. Gordon, (2007) Designed electromagnetic pulsed therapy: Clinical applications. Journal of Cellular Phy- siology, 212, 579-582.

[44]   G. Gordon, (2008) Extrinsic electromagnetic fields, low frequency (phonon) vibrations, and control of cell func- tion: A non-linear resonance system. Journal of Biome- dical Science and Engineering (JBiSE), 1, 152-156. (open accessible at

[45]   K. C. Chou and N. Y. Chen, (1977) The biological func- tions of low-frequency phonons. Scientia Sinica, 20, 447- 457.

[46]   C. Chothia and J. Janin, (1975) Principles of protein- protein recognition. Nature, 256, 705-708.

[47]   P. C. Painter and L. E. Mosher, (1979) The low-frequ- ency Raman spectrum of an antibody molecule: Bovine IgG. Biopolymers, 18, 3121-3123.

[48]   P. C. Painter, L. E. Mosher, and C. Rhoads, (1981) Low- frequency modes in the Raman spectrum of DNA. Bio-polymers, 20, 243-247.

[49]   P. C. Painter, L. E. Mosher, and C. Rhoads, (1982) Low- frequency modes in the Raman spectra of proteins. Bio- polymers, 21, 1469-1472.

[50]   H. Urabe and Y. Tominaga, (1982) Low-frequency co- llective modes of DNA double helix by Raman spectro- scopy. Biopolymers, 21, 2477-2481.

[51]   H. Urabe, Y. Tominaga, and K. Kubota, (1983) Experi- mental evidence of collective vibrations in DNA double helix Raman spectroscopy. Journal of Chemical Physics, 78, 5937-5939.

[52]   H. Urabe, Y. Sugawara, M. Ataka, and A. Rupprecht, (1998) Low-frequency Raman spectra of lysozyme crys- tals and oriented DNA films: Dynamics of crystal water. Biophys J, 74, 1533-1540.

[53]   P. Martel, (1992) Biophysical aspects of neutron sca- ttering from vibrational modes of proteins. Prog Biophys Mol Biol, 57, 129-179.

[54]   K. C. Chou, (1983) Low-frequency vibrations of helical structures in protein molecules. Biochemical Journal, 209, 573-580.

[55]   K. C. Chou, (1983) Identification of low-frequency modes in protein molecules. Biochemical Journal, 215, 465-469.

[56]   K. C. Chou, (1984) Low-frequency vibration of DNA molecules. Biochemical Journal, 221, 27-31.

[57]   K. C. Chou, (1984) The biological functions of low-frequency phonons: 4. resonance effects and allo- steric transition. Biophysical Chemistry, 20, 61-71.

[58]   K. C. Chou, (1985) Prediction of a low-frequency mode in BPTI. International Journal of Biological Macromo- lecules, 7, 77-80.

[59]   K. C. Chou, (1985) Low-frequency motions in protein molecules: Beta-sheet and beta-barrel. Biophysical Jour- nal, 48, 289-297.

[60]   K. C. Chou, (1989) Low-frequency resonance and co- operativity of hemoglobin. Trends in Biochemical Sci-ences, 14, 212.

[61]   K. C. Chou, G. M. Maggiora, and B. Mao, (1989) Quasi- continuum models of twist-like and accordion-like low- frequency motions in DNA. Biophysical Journal, 56, 295-305.

[62]   K. C. Chou, (1986) Origin of low-frequency motion in biological macromolecules: A view of recent progress of quasi-continuity model. Biophysical Chemistry, 25, 105- 116.

[63]   K. C. Chou, N. Y. Chen, and S. Forsen, (1981) The bio- logical functions of low-frequency phonons: 2. Co-op-erative effects. Chemica Scripta, 18, 126-132.

[64]   K. C. Chou, (1984) The biological functions of low-fre- quency phonons: 3. Helical structures and micro-envir- onment. Biophysical Journal, 45, 881-890.

[65]   K. C. Chou, (1987) The biological functions of mecha- nism of allosteric transition in antibody molecules. Bio- polymers, 26, 285-295.

[66]   K. C. Chou and G. M. Maggiora, (1988) The biological functions of low-frequency phonons: 7. The impetus for DNA to accommodate intercalators. British Polymer Journal, 20, 143-148.

[67]   K. C. Chou and B. Mao, (1988) Collective motion in DNA and its role in drug intercalation. Biopolymers, 27, 1795-1815.

[68]   K. C. Chou, and Y. S. Kiang, (1985) The biological func-tions of low-frequency phonons: 5. A phenomenological theory. Biophysical Chemistry, 22, 219-235.

[69]   K. C. Chou, C. T. Zhang, and G. M. Maggiora, (1994) Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopo- lymers, 34, 143-153.

[70]   Z. Sinkala, (2006) Soliton/exciton transport in proteins. J Theor Biol, 241, 919-927.

[71]   K. C. Chou, (1988) Review: Low-frequency collective motion in biomacromolecules and its biological functions. Biophysical Chemistry, 30, 3-48.

[72]   R. Nuccitelli, X. Chen, A. F. Pakhomov, W. H. Baldwin, S. Sheik, J. L. Pomicter, W. Ren, C. Osgood, R. J. Swanson, J. F. Kolb, S. J. Beebe, and K. H. Schoenbach, (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Internal Journal of Cancer, 125, 438-445.

[73]   J. Friedman, S. Kraus, Y. Hauptman, Y. Schiff, and R. Seger, (2007) Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J., 405, 559-568.

[74]   M. Jin, M. Blank, and R. Goodman, (2000) ERK1/2 Phosphorylation, Induced by Electromagnetic Fields, Diminishes During Neoplastic Transformation. Journal of Cellular Biochemistry, 78, 371-379.

[75]   D. Leszczynski, S. Joenvaara, J. Reivinen, and R. Kuokka, (2002) Non-thermal activation of the hsp27/ p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for can-cer-and blood-brain barrier-related effects. Differentia-tion, 70, 120-129.

[76]   M. Simko, (2004) Induction of cell activation processes by low frequency electromagnetic fields. Scientific World Journal, Suppl 2, 4, 4-22.

[77]   M. Simko, C. Hartwig, M. Lantow, M. Lupke, M. O. Mattsson, Q. Rahman, and J. Rollwitz, (2006) Hsp70 ex-pression and free radical release after exposure to non-thermal radio-frequency electromagnetic fields and ultrafine particles in human Mono Mac 6 cells. Toxicol Lett. 161, 73-82.

[78]   R. Marais, J. Wynne, and R. Treisman, (1993) The SRF accessory protein Elk-1 contains a growth factor-regu- lated transcriptional activation domain. Cell, 73, 381- 393.

[79]   R. Janecht, W. H. Ernst, V. Pigoud, and A. Nordheim, (1993) Activation of TCF Elk-1 by MAP Kinases. EMBO J., 12, 5097-5104.

[80]   H. Gille, M. Kortenjann, O. Thomae, C. Moomaw, C. Slaughter, M. H. Cobb, and P. E. Shaw, (1995) ERK pho- sphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J., 14, 951-962.

[81]   V. Sgambato, P. Vanhouttte, C. Pages, M. Rogard, L. Hipskind, M. J. Besson, and J. Caboche, (1998) In vivo expression and regulation of Elk-1, a target of the ex-tracellular-regulated kinase signaling pathway, in the rat brain. J. Neurosci., 18, 214-226.

[82]   S. Rao and A. S. Henderson, (1996) Regulation of c-fos is affected by electromagnetic fields. J Cell Biochem, 63, 358-365.

[83]   X. Zhang, H. Zhang, C. Zheng, C. Li, X. Zhang, and W. Xiong, (2002) Cell Biology International, 26, 599-603.

[84]   H. Lin, M. Blank, and R. Goodman, (1999) A magnetic field responsive domain in the human HSP70 promoter. J Cell Biochem., 75, 170-176.