Rui Alberto M. M. Lima

Polytechnic Institute of Braganca (IPB) & CEFT/Porto University (FEUP)

Portugal Assistant Professor



2008 PH.D in Biomedical Engineering, Minho University (equivalence), Portugal

2007 PH.D in Engineering, Department of Bioengineering and Robotics, Tohoku University, Japan

2001 Master in Mechanical Engineering, Energy Option (equivalence), Minho University, Portugal

2000 Master of Science in Engineering (MSc-Eng) Department of Chemical and Process Engineering, Sheffield University

1998 Graduation in Mechanical Engineering (5 years course), Minho University, Portugal

Research Fields

Biomicrofluidics Microcirculation

Biofluid Mechanics Blood on chips

Energy & Environment

Publications (selected)

  1. Pinto E., Faustino V., Rodrigues R., Pinho D., Garcia V. , Miranda J., Lima R., 2015. A rapid and low-cost nonlithographic method to fabricate biomedical microdevices for blood flow analysis. Micromachines, 6, 121-135; doi:10.3390/mi60101212.
  2. Pastrana-Martínez, L.M., Pereira, N., Lima, R., Gomes, H.T., Silva, A.M.T., 2015. Degradation of diphenhydramine by photo-Fenton using magnetically recoverable iron oxide nanoparticles as catalyst. Chemical Engineering Journal, 261, 1, 45–52.
  3. Faustino V, Pinho D, Yaginuma T, Calhelha R, Ferreira I, Lima R. 2014. Extensional flow-based microfluidic device: deformability assessment of red blood cells in contact with tumor cells. BioChip J., 8(1): 42-47.
  4. Rodrigues R, Faustino V, Pinto E, Pinho D, Lima R. 2014. Red Blood Cells Deformability Index Assessment in a Hyperbolic Microchannel: The Diamide and Glutaraldehyde Effect, WebmedCentralplus Biomedical Engineering. 1: WMCPLS00253.
  5. Pereira N., Mujika M., Arana S., Correia T., Silva A. M. T., Gomes H. T., Rodrigues P. J., Lima R., 2014. The effect of a static magnetic field on the flow of iron oxide magnetic nanoparticles through glass capillaries. In: R. Lima, T. Ishikawa, Y. Imai & M. S. N. Oliveira (Eds), Visualization and simulation of complex flows in biomedical engineering., Springer, pp.181-196.
  6. Novais S., Pinho D., Bento D., Pinto E., Yaginuma T., Dias R., Fernandes C., Garcia V., Pereira A. I., Mujika M., Arana S., Lima R., 2014. Cell-free layer measurements in complex geometries: contractions and bifurcations. In: R. Lima, T. Ishikawa, Y. Imai & M. S. N. Oliveira (Eds), Visualization and simulation of complex flows in biomedical engineering, Springer, pp.119-132.
  7. Pinho D, Yaginuma T, Lima R. 2013. A Microfluidic Device for Partial Cell Separation and Deformability Assessment. BioChip J. 7(4):367-374.
  8. Yaginuma, T., M. S. N. Oliveira, Lima, R., Ishikawa, T., Yamaguchi T., 2013. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel, Biomicrofluidics, 7, 054110.
  9. Pinho, D., Gayubo, F., Pereira A. I., Lima, R., 2013. A comparison between a manual and automatic method to characterize red blood cell trajectories. International Journal for Numerical Methods in Biomedical Engineering, 29(9), 977-987.
  10. Lima R., Ishikawa T., Imai Y., Yamaguchi T., 2013. Confocal micro-PIV/PTV measurements of the blood flow in micro-channels, In: M.W.Collins & C.S.König (Eds), Nano and Micro Flow Systems for Bioanalysis, Springer, 2, pp.131-151.
  11. Lima R., Joseyphus R. J., Ishikawa T., Imai Y., Yamaguchi T., 2012. Micro-Flow Visualization of Magnetic Nanoparticles for Biomedical Applications. In: Dias R, Martins AA, Lima R, Mata TM (Eds), Single and two-Phase Flows on Chemical and Biomedical Engineering, Bentham Science Publishers: Netherlands, pp.513–547.
  12. Lima R., Ishikawa T, Imai Y, Yamaguchi T., 2012. Blood flow behavior in microchannels: advances and future trends. In: Dias R, Martins AA, Lima R, Mata TM (eds), Single and two-Phase Flows on Chemical and Biomedical Engineering, Bentham Science Publishers: Netherlands, pp513–547.
  13. Garcia V., Dias R., Lima R., 2012. In Vitro Blood Flow Behaviour in Microchannels with Simple and Complex Geometries, In: Ganesh R. Naik (ed.), Applied Biological Engineering – Principles and Practice, InTech, 17, pp.393-416.
  14. Leble V., Lima R., et al. 2011 "Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation" Biomicrofluidics, 5, 044120.
  15. Lima, R., et al., 2009. Axisymmetric PDMS microchannels for in vitro haemodynamics studies. Biofabrication,1, 3, 035005.
  16. Lima, R., et al., 2009. Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PTV system. Annals of Biomedical Engineering, 37, 8, 1546-1559.
  17. Fujiwara, H., Ishikawa T., Lima, R., et al., 2009. Red blood cell motions in a high hematocrit blood flowing through a stenosed microchannel. Journal of Biomechanics, 42, 838-843.
  18. Lima, R., et al., 2008. Radial dispersion of red blood cells in blood flowing through glass capillaries: role of heamatocrit and geometry. Journal of Biomechanics, 41, 2188-2197.
  19. Lima, R., et al., 2008. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomedical Microdevices, 10(2), 153-167.
  20. Lima, R., et al., 2007. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. Journal of Biomechanics, 40, 2752-2757.
  21. Lima, R., et al., 2006. Confocal micro-PIV measurements of three dimensional profiles of cell suspension flow in a square microchannel, Measurement Science and Technology 17, 797-808.
  22. Tsubota, K., Wada, S., Kamada, H., Kitagawa, Y., Lima, R., and Yamaguchi, T., 2006, “A particle method for blood flow simulation: application to flowing red blood cells and platelets”, Journal of the Earth Simulator 5, 2-7.

Profile Details

Last Updated: 2015-07-06