Dr. David D. Boehr

Dr. David D. Boehr

Department of Chemistry

The Pennsylvania State University, USA

Assistant Professor



2004 Ph.D., McMaster University, Biochemistry

1997 B.Sc., University of Lethbridge, Biochemistry

Publications (selected)

  1. Liu X., Yang X., Lee C.A., Moustafa I.M., Smidansky E.D., Lum D., Arnold J.J., Cameron C.E. and Boehr D.D. (2013), Vaccine-derived mutation in motif D of poliovirus RNA-dependent RNA polymerase lowers nucleotide incorporation fidelity. J. Biol. Chem., in press.
  2. Boehr D.D., Schnell J.R., McElheny D., Bae S.H., Duggan B.M., Benkovic S.J., Dyson H.J. and Wright P.E. (2013), A distal mutation perturbs dynamic amino acid networks in dihydrofolate reductase. Biochemistry, 52, 4605-4619.
  3. Zaccardi M.J., Yezdimer E.M. and Boehr D.D. (2013), Functional identification of the general acid and base in the dehydration step of indole-3-glycerol phosphate synthase catalysis. J. Biol. Chem., 288, 26350-26356.
  4. Axe J.M. and Boehr D.D. (2013), Long-range interactions in the alpha subunit of tryptophan synthase help to coordinate ligand binding, catalysis and substrate channeling, J. Mol. Biol, 425, 1527-1545.
  5. Yang X., Smidansky E.D., Maksimchuk K.R., Lum D., Welch J.L., Arnold J.J., Cameron C.E. and Boehr D.D. (2012), Motif D of viral RNA-dependent RNA polymerases determines efficiency and fidelity of nucleotide addition, Structure, 20, 1519-1527.
  6. Weikl T.R. and Boehr D.D. (2012), Conformational selection and induced changes along the catalytic cycle of Escherichia.coli dihydrofolate reductase. Proteins, 80, 2369-2383.
  7. Zaccardi M.J., Mannweiler O. and Boehr D.D. (2012), Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures, Biochem. Biophys. Res. Comm., 418, 324-329.
  8. D.D. Boehr (2011), Promiscuity in protein-RNA interactions: Conformational ensembles facilitate molecular recognition in the spliceosome: Conformational diversity in U2AF(65) facilitates binding to diverse RNA sequences, Bioessays, 34, 174-180.
  9. Yang X., Welch J.L., Arnold J.J. and Boehr D.D. (2010) Long-range interaction networks in the function and fidelity of poliovirus RNA-dependent RNA polymerase studied by nuclear magnetic resonance, Biochemistry, 49, 9361-9371.
  10. Boehr D.D., McElheny D., Dyson H.J. and Wright P.E. (2010), Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands, Proc. Natl. Acad. Sci., 107, 1373-1378.
  11. Boehr, D.D. (2009), During transitions proteins make fleeting bonds, Cell, 139, 1049-1051.
  12. Boehr D.D., Nussinov R. and Wright P.E. (2009), The role of dynamic conformational ensembles in biomolecular recognition, Nat. Chem. Biol., 5, 789-796.
  13. Boehr D.D. and Wright P.E. (2008), How do proteins interact? Science, 320, 1429-1430.
  14. Boehr D.D., Dyson H.J. and Wright P.E. (2008), Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase catalysis, Biochemistry, 47, 9227-9233.
  15. Boehr D.D., McElheny D., Dyson H.J. and Wright P.E. (2006), The dynamic energy landscape of dihydrofolate reductase catalysis, Science, 313, 1638-1642.
  16. Boehr D.D., Dyson H.J. and Wright P.E. (2006), An NMR perspective on enzyme dynamics, Chem. Rev., 106, 3055-3079.
  17. Boehr D.D., Farley A.R., LaRonde F.J., Murdock T.R., Wright G.D. and Cox J.R. (2005), Establishing the principles of recognition in the adenine-binding region of an aminoglycoside antibiotic kinase [APH(3’)-IIIa], Biochemistry, 44, 12445-12453.
  18. Boehr D.D., Daigle D.M. and Wright G.D. (2004), Domain-domain interactions in the aminoglycoside antibiotic resistance enzyme AAC(6')-APH(2"), Biochemistry, 43, 9846-9855.
  19. Draker K.A., Boehr D.D., Elowe N.H., Noga T.J. and Wright G.D. (2003), Functional annotation of putative aminoglycoside antibiotic modifying proteins in Mycobacterium tuberculosis H37Rv., J. Antibiot., 56, 135-142.
  20. Boehr D.D., Draker K.A., Koteva K., Bains M., Hancock R.E. and Wright G.D. (2003), Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes, Chem. Biol., 10, 189-196.
  21. Boehr D.D., Jenkins S.I. and Wright G.D. (2003), The molecular basis of the expansive substrate specificity of the antibiotic resistance enzyme aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2". The role of ASP-99 as an active site base important for acetyl transfer, J. Biol. Chem., 278, 12873-12880.
  22. Boehr D.D., Farley A.R., Wright G.D. and Cox J.R. (2002), Analysis of the pi-pi stacking interactions between the aminoglycoside antibiotic kinase APH(3')-IIIa and its nucleotide ligands, Chem. Biol, 9, 1209-1217.
  23. Thompson P.R., Boehr D.D., Berghuis A.M. and Wright G.D. (2002), Mechanism of aminoglycoside antibiotic kinase APH(3')-IIIa: role of the nucleotide positioning loop, Biochemistry, 41, 7001-7007.
  24. Boehr D.D., Lane W.S. and Wright G.D. (2001), Active site labeling of the gentamicin resistance enzyme AAC(6')-APH(2") by the lipid kinase inhibitor wortmannin, Chem. Biol., 8, 791-800.
  25. Boehr D.D., Thompson P.R. and Wright G.D. (2001), Molecular mechanism of aminoglycoside antibiotic kinase APH(3')-IIIa: roles of conserved active site residues, J. Biol. Chem., 276, 23929-23936. 26. Sucheck S.J., Wong A.L., Koeller K.M., Boehr D.D., Draker K.A., Sears P., Wright G.D. and Wong C.H. (2000), Design of bifunctional antibiotics that target bacterial rRNA and inhibit resistance-causing enzymes, J. Am. Chem. Soc. 122, 5230-5231.