Zuhair Nashed

Prof. Zuhair Nashed

Department of Mathematics

University of Central Florida, Orlando, USA




1963 Ph.D. & M.S., Mathematics, The University of Michigan at Ann Arbor, USA

1958 M.Sc., Electrical Engineering, Massachusetts Institute of Technology, USA

1957 B.Sc., Electrical Engineering, Massachusetts Institute of Technology, USA

Publications (Selected)

Books, Book Chapters, Dissertation

  1. Inverse Problems, Image Analysis, and Medical Imaging, with O. Scherzer, co-editor, Contemporary Mathematics, vol. 313, American Mathematical Society, Providence, RI, 2002, 305 pp.
  2. Mathematical Models and Methods for Real World Systems, K. M. Furati, Z. Nashed, and A. H. Siddiqi, editors, Chapman & Hall/CRC, Boca Raton, FL, 2006, 455 pp.
  3. Integral Methods in Science and Engineering: Theoretical and Practical Aspects, C. Constanda, Z. Nashed, and D. Rollins, editors, Birkhauser, Boston, 2006, 312 pp.8
  4. Frontiers in Interpolation and Approximation, dedicated to the memory of Ambikeshwar Sharma, N. K. Govil, H. M. Mhaskar, R. N. Mohapatra, Z. Nashed, and J. Szabados, editors, Chapman & Hall/CRC, Boca Raton/London/New York, 2006, 431 pp.
  5. Advances in Applied and Computational Mathematics, F. Liu, Z. Nashed, G. M. N´Guerekata, editors, Nova Science Publishers, New York, 2006, 280 pages. Frames and Operator Theory in Analysis and Signal Processing, D. R. Larson, P. Massopust, Z.
  6. Nashed, M. C. Nguyen, M. Papadakis, and A. Zayed, editors, Contemporary Mathematics, vol. American Mathematical Society, Providence, RI, 2008, 291 pp. 


  1. Stable recovery of analytic functions using basic hypergeometric series, with V.K. Tuan, Journal of Computational Analysis and Applications,3 (2001), 33-51.
  2. Paley-Wiener type theorems by transmutations with A. Boumenir, J. Fourier Analysis and Applications, 7 (2001), 395-417.
  3. Sampling expansions and interpolation in unitarily translation invariant reproducing kernel Hilbert spaces, with C. Van der Mee and S. Seatzu, Advances in Computational Mathematics, 19 (2003), 355-372.
  4. Iterative-projection regularization of ill-posed variational inequalities, with Y. Alber, Analysis (Munich), 24 (2004), 19-39.
  5. Marcia Kashimoto and Zuhair Nashed, A Choquet-Deny-type theorem and applications to approximation in weighted spaces, Mediterr. J. Math., 2 (2005), 407-416.
  6. L. Gongsheng and Z. Nashed, A modified Tikhonov regularization for linear operator equations, Numer. Funct. Anal. Optimiz., 26 (2005), 543-564.
  7. Zuhair Nashed, Applications of Wavelets and Kernel Methods in Inverse Problems, in “Integral Methods in Science and Engineering”, C. Constanda, Z. Nashed, and D. Rollins, eds., Birkhauser, Boston, 2006, pp. 189 – 197.
  8. Y. Wang, Z. Wen, Z. Nashed and Q. Sun, Direct fast method for time-limited signal reconstruction, Applied Optics, 45 (2006), 3111 – 3126.
  9. C.W. Groetsch and M. Z. Nashed, Kendall Eugene Atkinson: an appreciation, J. Integral Equations Appl., 18 (2006), 1 – 11.
  10. M. S. Kashimoto and M. Z. Nashed, A note on factorization of bounded linear operators, Communications in Applied Analysis, 11 (2007), 97-102.
  11. Y. Wang, Z. Wen, Z. Nashed and Q. Sun, On direct method for time-limited signal and image reconstruction and enhancement, Int. J. Wavelets, Multiresolution and Information Processing, 5 (2007), 51-68.
  12. Y. Wang, X. Li, Z. Nashed, F. Zhao, H. Yang, Regularized kernel-based BRDF model inversion for ill-posed land surface parameter retrieval, Remote Sensing of Environment, 111 (2007), 36 – 50.