Richard Saurel

Professor Richard Saurel

Aix-Marseille University, France.





1995  HDR, Multiphase flow modelling, Aix-Marseille University, France.
1990  Ph.D., Propgation of discontinuities in two-phase flows, University of Provence, France.
1988  Engineer degree, Mechanical engineering, IUSTI, Marseille, France.



  1. Hank, S., Saurel, R. and Le Metayer, O. (2011) A hyperbolic Eulerian model for two-phase dilute suspensions. Journal of Modern Physics (2), 997-1011.
  2. Menina, R., Saurel, R., Zereg, R. and Houas, L. (2011) Modelling gas dynamics in one-dimensional ducts with abrupt area change. Shock Waves 21(5), 451-466.
  3. Berry, R., Saurel, R. and Le Metayer, O. (2010) The discrete equations method (DEM) for fully compressible, tow-phase flows in ducts of spatially varying cross-section. Nuclear Engineering and Design 240, pp 3797-3818.
  4. R. Saurel, N. Favrie, F. Petitpas, M.H. Lallemand and S. Gavrilyuk (2010) Modelling irreversible dynamic compaction of powders. Journal of Fluid Mechanics, 664, pp 348-396.
  5. G. Baudin, R. Saurel, F. Petitpas, O. Le Metayer, J. Massoni, V. Belski and E. Zotov (2010) Toward a thermal non-equilibrium multi-phase model for high explosive metallic particles. Journal of Energetic Materials 28, pp 154–179.
  6. R. Berry, R. Saurel, F. Petitpas (2009) Unified two-phase CFD modelling of boiling, cavitation and bubble collapse. ASME – Fluid Engineering Spring newsletter, pp 10-11.
  7. N. Favrie, S. Gavrilyuk and R. Saurel (2009) Solid-fluid diffuse interface model in cases of extreme deformations. Journal of Computational Physics, vol 228(6), pp 6037-6077.
  8. F. Petitpas, J. Massoni, R. Saurel, E. Lapebie and L. Munier (2009) Diffuse interface model for high speed cavitating underwater systems. Int. J. Multiphase Flow 35, pp 747-759.
  9. F. Petitpas, R. Saurel, E. Franquet, A. Chinnayya (2009) Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional computations. Shock Waves, Vol.19, Number 5, 377-401.
  10. F. Renaud, R. Saurel and L. Houas (2009) Les interactions choc-bulles: une configuration test pour lamodélisation bi-fluide. Chocs (37), Revue scientifique et technique des applications militaires, 67-74.
  11. R. Saurel, F. Petitpas and R.A. Berry (2009) Simple and efficient relaxation for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics 228, 1678-1712.
  12. R. Saurel and F. Petitpas and R. Abgrall (2008) Modeling phase transition in metastable liquids. Application to flashing and cavitating flows. Journal of Fluid Mechanics, 607: 313-350.
  13. S. Gavrilyuk, N. Favrie and R. Saurel (2008) A conservative model for non linear elasticity. Journal of Computational Physics 227(5), pp 2941-2969.
  14. F. Petitpas, E. Franquet, R. Saurel and O. Le Metayer (2007) A relaxation-projection method for compressible flows. Part II : Artificial heat exchanges for multiphase shocks. Journal of Computational Physics, vol. 225(2), 2214-2248.
  15. R. Saurel, J. Massoni and F. Renaud (2007) A Lagrangian numerical method for compressible multiphase flows. Int. J. Numerical Methods in Fluids, Vol. 54, Issue 12, pp 1425 - 1450.
  16. S. Gavrilyuk and R. Saurel (2007) Rankine-Hugoniot relations for shocks in heterogeneous mixtures. Journal of Fluid Mechanics, vol. 575, pp 495-507.
  17. R. Saurel, E. Franquet, E. Daniel and O. Le Metayer (2007) A relaxation-projection method for Mcompressible flows. Part I : The numerical equation of state for the Euler equations. Journal of Computational Physics, vol 223(2), pp 822-845.
  18. R. Saurel, O. Le Metayer, J. Massoni and S. Gavrilyuk (2007) Shock jump relations for multiphase mixtures with stiff mechanical relaxation . Shock Waves (Int. J.), Vol. 16 (3), pp 209-232.
  19. J. Massoni, R. Saurel, A. Lefrançois and G. Baudin (2006) Modeling spherical explosions with aluminized energetic materials. Shock Waves (Int. J.), Vol.16 n°1, pp 75-92.
  20. R. Saurel, A. Chinnayya and F. Renaud (2003) Thermodynamic analysis and numerical resolution of a turbulent – fully ionized plasma flow model. Shock Waves (Int. J.), Vol 13, n. 4, pp 283-298