Yongli Song

Dr. Yongli Song

Department of Mathematics

Tongji Universtiy, China

Associate Professor



Ph.D., Shanghai Jiao Tong University, China

M.S., Guangxi University, China

B.S., Shanxi Institute of Education, China

Publications (Selected) 

  1. Y.Song, Y.Han, Y.Peng, Stability and Hopf bifurcation in an unidirectional ring of n neurons with distributed delays,Neurocomputing 121 (2013) 442-452.
  2. J. Jiang, Y.Song, Bogdanov-Takens bifurcation in an oscillator with negative damping and delayed position feedback,Applied Mathematical Modelling, 37 (2013) 8091-8105.
  3. R.Yang, Y.Peng, Y.Song, Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control, Nonlinear Dynamics 73 (2013) 737-749.
  4. Y.Song, J.Jiang, Steady-state, Hopf and steady-state-Hopf bifurcations in delay differential equations with applications to a damped harmonic oscillator with delay feedback. International Journal of Bifurcation and Chaos 22 ( 2012 ) 12502861-125028631.
  5. Y.Song, J. Xu, Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh-Nagumo system. IEEE Transactions on Neural Networks 23 (2012) 1659-1670.
  6. Y.Song, Spatio-temporal patterns of Hopf bifurcating periodic oscillations in a pair of identical tri-neuron network loops.Communications in Nonlinear Science and Numerical Simulation 17(2) (2012) 943-952.
  7. Y. Han, Y.Song, Stability and Hopf bifurcation in a three-neuron unidirectional ring with distributed delays. Nonlinear Dynamics69 (2012) 357-370.
  8. Y.Song, J. Xu, Tonghua Zhang.Bifurcation, amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling. Chaos 21(2) (2011) 023111.
  9. Y.Song, Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators. Nonlinear Dynamics 63 (2011) 223-237.
  10. S. Yuan,  Y.Song, Junhui Li, Oscillations in a plasmid turbidostat model with delayed feedback control, Discrete and Continuous Dynamical Systems Series B 15 (2011) 893-914.
  11. Y.Song, T.H. Zhang, M.O. Tade, Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling, Journal of Nonlinear Science 19 (2009) 597-632.
  12. Y.Song, M.O. Tade, T.H. Zhang, Bifurcation analysis and spatio-temporal patterns of nonlinear oscillations in a delayed neural network with unidirectional coupling,Nonlinearity 22 (2009) 975-1001.
  13. Y.Song, M.O. Tade, and T.H. Zhang, Stabilization and algorithm of integrator plusdead-time process using PID controller,Journal of Process Control 19 (2009) 1529-1537.
  14. Y.Song, V.A. Makarov, and M.G. Velarde, Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks, Biological Cybernetics 101 (2009) 147-167.
  15. Y.Song, J.J. Wei, Y. Yuan, Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators, Journal of Nonlinear Science 17 (2007) 145-166.
  16. Y.Song, S.L. Yuan, Bifurcation analysis in a predator-prey system with time delay, Nonlinear Analysis-Real World Applications 7 (2006) 265-284.
  17. Y.Song, J.J. Wei, Y. Yuan, Bifurcation analysis on a survival red blood cells model, Journal of Mathematical Analysis and Applications 316 (2006) 459-471.
  18. Y.Song, M.A. Han, J.J. Wei, Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays, Physica D-Nonlinear Phenomena 200 (2005) 185-204.