Back
Return
Biography

Dr. Xueyan Liu

Delft University of Technology, the Netherlands


Email: x.liu@tudelft.nl


Qualifications

1997-2003  Ph.D., Faculty of Civil Engineering & Geosciences, Delft University of Technology, Delft, the Netherlands

1986-1989  M.D., Foundation Engineering, Liaoning Technical University, Fuxin, China

1982-1986  B.A., Mining Construction Engineering, Liaoning Technical University, Fuxin, China


Publications (Selected)

1. Liu, X, Scarpas, T, Li, J, Tzimiris, G, Hofman, R &Voskuilen, J (2013). Test method to assess bonding characteristics of membrane layers in wearing course on orthotropic steel bridge decks. Transportation Research Record, (ISSN 0361-1981), 2360(January), 77-83.

2. Liu, X, Scarpas, A, Kasbergen, C & Kondo, E (2012). Numerical analysis characterizing the influence of the evolution of the length scale on strain localization in cosserat media. International Journal of Geomechanics, (ISSN 1532-3641), 12(3), 272-280.

3. Liu, X, Scarpas, A, Gurp, C van &Venmans, AAM (2011). Numerical investigation of response of widened pavement system. Transportation Research Record, (ISSN 0361-1981), 2011(2227), 3-12.

4. Liu, X, Medani, T O, Scarpas, A , Huurman, M & Molenaar, A AA (2010). Characterisation of surfacing materials for orthotropic steel deck bridges - Part 2: numerical work. The International Journal of Pavement Engineering, (ISSN 1029-8436), 11(3), 255-265.

5. Liu, X., Scarpas, A. and Kasbergen, C. (2007). A micropolar formulation of the Desai hierarchical model for elastoplastic porous media. In: International Journal of Solids and Structures, Volume 44, Issue 9, 1 May 2007, Pages 2695-2714, Available online: www.sciencedirect.com.

6. Liu, X. and Scarpas, A. (2005). Numerical Modeling of the Influence of Water Suction on the Formation of Strain Localization in Saturated Sand. In. CMES, vol. 9 no. 1, pp. 57 - 74 (2005), Tech Science Press, ISSN: 1526-1492 (printed), ISSN: 1526-1506.

7. Liu, X., Cheng, X.H., Scarpas, A. and Blaauwendraad, J. (2005). Numerical modelling of nonlinear response of soil - Part 1: Constitutive model. In: International Journal of Solids and Structures 42 (2005), p. 1849 - 1881 Elsevier.

8. Li, J, Liu, X, Scarpas, A, Tzimiris, G, Kasbergen, C, Hofman, R & Voskuilen, J (2013). Analysis of five-point bending test for multilayer surfacing system on orthotropic steel bridge. In s.n. (Ed.), Transportation research board (pp. 1-13). Washington: TRB.

9. Liu, X, Scarpas, T, Li, J, Tzimiris, G, Hofman, R &Voskuilen, J (2013). Test method to assess bonding characteristics of membrane layers in wearing course on orthotropic steel bridge decks. Transportation Research Record, 2360, 77-83.

10. Liu, X, Scarpas, A, Kasbergen, C & Kondo, E (2012). Numerical analysis characterizing the influence of the evolution of the length scale on strain localization in cosserat media. International Journal of Geomechanics, 12(3), 272-280.

11. Liu, X, Scarpas, A, Gurp, C van &Venmans, AAM (2011). Numerical investigation of response of widened pavement system. Transportation Research Record, (ISSN 0361-1981), 2011(2227), 3-12.

12. Liu, X, Scarpas, A, Kasbergen, C & Kondo, E (2011). Characterizing the influence of the evolution of length scale on the strain localization in cosserat media. In L Ge, X Zhang, A Gomes Correia& J Wu (Eds.), Instrumentation, testing, and modeling of soil and rock behavior Vol. 222. Geotechnical Special Publications, 62-69, Hunan, China.

13. Zhao, Y, Liu, X, Kasbergen, C & Bondt, A de (2011). Numerical analysis of integral pavement/soil-wall structures in soft soil. Finite Elements in Analysis and Design, 47(4), 461-469.

14. Liu, X, Medani, T O, Scarpas, A, Huurman, M & Molenaar, A AA (2010). Characterisation of surfacing materials for orthotropic steel deck bridges - Part 2: numerical work. The International Journal of Pavement Engineering, 11(3), 255-265.

15. Medani, T O, Liu, X , Huurman, M , Scarpas, A & Molenaar, A AA (2010). Characterisation of surfacing materials for orthotropic steel deck bridges - Part 1: experiment work. The International Journal of Pavement Engineering, 11(3), 237-253.

16. Jonsthovel, T B, Liu, X , Scarpas, A &Vuik, C (2009). Parallel direct solver for linear systems resulting from constitutive modelling of pavement. In CeylanHalil, Liu Xueyan, GopalakrishnanKasthurirangan& Huang Likui (Eds.), Performance modeling and evaluation of pavement systems and materials Vol. 195. Geotechnical Special Publications, 90-95, Virginia, USA: American Society of Civil.

17. Liu, X, Scarpas, A, Kasbergen, C & Zhang, W X (2009). Development and application of constitutive model for simulation of mechanical behavior of granular material. In : Ge, B Tang, W Wei & R Chen (Eds.), Soils and rock instrumentation, behavior and modeling Vol. 194. Geotechnical Special Publications, 24-29, Virginia, USA: American Society of Civil Engineers.

18. Liu, X (Ed.). (2009). Performance modeling and evaluation of pavement systems and materials (Geotechnical special publication, 195). Virginia, USA: American Society of Civil Engineers.

19. Liu, X, Medani, T O, Scarpas, A, Huurman, M & Molenaar, A AA (2008). Experimental and numerical characterization of a membrane material for orthotropic steel deck bridges: part 2 development and implementation of a nonliniear constitutive model. Finite Elements in Analysis and Design, 580-594.

20. Medani, T O, Liu, X, Huurman, M, Scarpas, A & Molenaar, A AA (2008). Experimental and numerical characterization of a membrane material for orthotropic steel deck bridges: part 1 experimental work and data interpretation. Finite Elements in Analysis and Design.

21. Wu, C, Xiu-run, G E , Liu, X & Scarpas, A (2007). Dynamic analysis of three-dimensional viscoelastic layer system using spectral element method. YantuLixue, Rock and Soil Mechanics, 28(11), 2265-2270.

22. Wu, C, Xiu-run, G E , Liu, X & Scarpas, A (2007). Inverse dynamic system for pavement structure based on 3D spectral elements. Electronic Journal of Geotechnical Engineering, 29(7), 1060-1064.

23. Liu, X., Scarpas, A. and Kasbergen, C. (2007). A micropolar formulation of the Desai hierarchical model for elastoplastic porous media. In: International Journal of Solids and Structures, Volume 44, Issue 9, 1 May 2007, 2695-2714.

24. Wu, Chun-Ying, Al-Khoury, R., Kasbergen, C. , Liu, X.Y. and Scarpas, A. (2007). Spectral Element Approach for Inverse Models of 3D Layered Pavement In: CMES, vol. 17, no. 3, pp. 163 - 172, 2007, Tech Science Press.

25. Ye, G, Liu, X, Poppe, A.M., De Schutter, G & Breugel, K van (2007). Numerical simulation of the hydration process and the development of microstructure of self-compacting cement paste containing limestone as filler. Materials and Structures,40(9 (RILEM 303)), 865-875.

26. Ye, G, Liu, X, Schutter, G, Taerwe, L. & Vandevelde, P (2007). Phase distribution and microstructural changes of self compacting cement paste at elevated temperature. Cement and Concrete Research, 37, 978-987.

27. Liu, X., Scarpas, A. and Kasbergen, C. (2006). A Micropolar Formulation of the Desai Hierarchical Model for Elastoplastic Porous Media. In: International Journal of Solids and Structures. Volume 44, Issue 9, 1 May 2007, 2695-2714.

28. Chun-Ying Wu, Xue-Yan Liu, A. Scarpas and Xiu-Run Ge (2006). Spectral Element Approach for Forward Models of 3D Layered Pavement. In. CMES, vol. 12 no. 2, 149-157, Tech Science Press.

29. Kasbergen, C., Zhao, Y., Scarpas and Liu, X. (2006). 3D finite Element Analysis of Pavement Constructed on Cement  Stabilized Soil-Walls with a new friction interface element, 279 - 286, ASCE, Geotechnical Special Publication no. 154. "Pavement Mechanics and Performance".

30. Liu, X. and Scarpas, A. (2006). Constitutive model and implicit return-mapping algorithm for the simulation of the Mechanical Behavior of Soil. p. 290 - 297, ASCE, Geotechnical Special Publication no. 150 "Soil and Rock Behavior and Modeling".

31. Wu, C.Y., Liu, X.Y., Scarpas, A., Ge, X.R. (2006) Spectral element approach for forward analytical models of three-dimensional layered pavement system. P.37-44, Geotechnical Special Publication no. 154. "Pavement Mechanics and Performance".

32. Swart, E., Scarpas, A. and Liu, X. (2006). Development of a Computational Model for Asphaltic Concrete Response under Cyclic Loading. p. 53-60, ASCE Geotechnical Special Publication no. 146 "Symposium on Mechanics of Flexible Pavements".

33. Liu, X. and Scarpas, A. (2005). Numerical Modeling of the Influence of Water Suction on the Formation of Strain Localization in Saturated Sand. In. CMES, vol. 9 no. 1, pp. 57 - 74 (2005), Tech Science Press.

34. Liu, X., Cheng, X.H., Scarpas, A. and Blaauwendraad, J. (2005). Numerical modelling of nonlinear response of soil - Part 1: Constitutive model. In: International Journal of Solids and Structures 42 (2005),1849 - 1881 Elsevier.

35. Liu, X., Scarpas, A. andBlaauwendraad, J. (2005). Numerical modelling of nonlinear response of soil - Part 2: Strain localization investigation on sand. In: International Journal of Solids and Structures 42 (2005), 1883 - 1907 Elsevier.


Personal Website:

http://www.pavements.citg.tudelft.nl

http://www.cew2016.org

http://www.capa-3d.org
http://www.isap-tc-models.org