AM  Vol.10 No.3 , March 2019
Low Voltage Daily Energy Demand Temperature Dependent Representation by Using Circular Statistics
ABSTRACT
In this work, a tool that allows visualizing the probability of the power demand according to the temperature and the hours of the day is presented. This aim contributes to the decision making support for the transformer and its service administration. The objective is to represent the demand accurately as a color statistical map based on two variables: the time of day and the ambient temperature. Since the daily energy consumption is periodic regarding the hours of the day in terms of several days, its representation with Gaussian models becomes difficult, but it is simplified when working with circular statistics. The circular statistics used here is the Von Mises distribution, which has the parameters mean address and kappa concentration. Results obtained from measurements made over a year in a medium-voltage transformer with intervals of 60 minutes are shown.
Cite this paper
Julián, P. , Carlos, S. , Miguel, P. , Martín, H. and Cristian, R. (2019) Low Voltage Daily Energy Demand Temperature Dependent Representation by Using Circular Statistics. Applied Mathematics, 10, 61-74. doi: 10.4236/am.2019.103006.
References
[1]   Piumetto, M., Pucheta, J., Vaschetti, J., Gómez Targarona, J.C., Coyos, C. and Arcurio, J. (2017) Predicción por series temporales aplicada a la estimación de cargabilidad de transformadores de distribución para la toma de decisiones. XII Latin American Congress on Electricity Generation and Transmission CLAGTEE 2017. 12 al 15 de noviembre de, Mar del Plata, Argentina.

[2]   Flores, W., Mombello, E., Rattá, G. and Jardini, J.A. (2007) Vida de transformadores de potencia sumergidos en aceite: Situación actual. Parte I. Correlación la vida y la temperatura. IEEE Latin America Transactions, 5, 50-54.
https://doi.org/10.1109/T-LA.2007.4444533

[3]   Emsley, A.M. and Stevens, G.C. (1994) Review of Chemical Indicators of Degradation of Cellulosic Electrical Paper Insulation in Oil-Filled Transformers. IEE Proceedings-Science, Measurement and Technology, 141, 324-334.

[4]   Pettersson, L. (1990) Estimation of the Remaining Service Life of Power Transformers and Their Insulation. Electra, 133, 65-71.

[5]   Pérez, R., Torres, H., Fernández, E. and Fernández, S. (2012) Sistema de Monitoreo en Tiempo Real para el Diagnóstico de Transformadores de Potencia en una Empresa de Energía Eléctrica. 10th Latin Amercican and Caribbean Conference Form Engineering and Techonology, Panamá City, July 23-27 2012, Paper 69.

[6]   Mackenzie, E.A., Crossey, J., dePablo A. and Ferguson, W. (2010) On-Line Monitoring and Diagnostics for Power Transformers. 2010 IEEE International Symposium on Electrical Insulation, San Diego, CA, 6-9 June 2010, 1-5.

[7]   Wang, T., Wang, Q.G., Wang, P. and Zhang, Y.X. (2017) Thermal Monitoring and Reliability Analysis System for Underground Substation. 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, 16-20 July 2017, 1-6.
https://doi.org/10.1109/PESGM.2017.8273884

[8]   Pérez, R., Torres, H., Fernández, E. and Fernández, S. (2012) Sistema de Monitoreo en Tiempo Real para el Diagnóstico de Transformadores de Potencia en una Empresa de Energía Eléctrica. 10th Latin American and Caribbean Conference for Engineering and Technology, Panamá City, 24-27 July 2012, Paper 6.

[9]   http://www.discar.com/

[10]   http://www.discar.com/?page_id=135

[11]   http://www.discar.com/?page_id=292

[12]   AENOR, UNE-IEC 60076-7 (2010) Parte 7: Guía de carga para transformadores potencia sumergidos en aceite.

[13]   AENOR, UNE-IEC 60076-2 (2013) Parte 2: Calentamiento de transformadores sumergidos en aceite.

[14]   International Standar, IEC 60354 (1991) Loading Guide for Oil-Immerse for Power Transformer. Second Edition.

[15]   IEEE Standards, IEEE Std C57.91-1995 (1995) Guide for Loading Mineral Oil Immersed Transformers.

[16]   Evans, Hastings, and Peacock (1993) Statistical Distributions. 2nd. Edition, John Wiley and Sons, Hoboken, Chapter 39.

[17]   Borradaile, G. (2003) Statistics of Earth Science Data. Springer, Berlin.
https://doi.org/10.1007/978-3-662-05223-5

[18]   Fisher, N.I. (1993) Statistical Analysis of Circular Data. Cambridge University Press, Cambridge.

 
 
Top