JMP  Vol.10 No.2 , February 2019
Structure and Photoluminescence Properties of Pr3+ Ion-Doped BaY2ZnO5 Phosphor Prepared Using a Sol-Gel Method?
The Pr3+ ion-doped BaY2ZnO5 phosphor with the orthorhombic structure was synthesized successfully using a sol-gel method in this study. The SEM images show that the BaY2ZnO5:Pr3+ phosphor particles are aggregational but have an isotropic distribution for 2 mol% Pr3+ ions doped. Under an excitation wavelength of 311 nm, the emission bands that appear in the emission spectra are due to the 3P0→3H4,5,6, 1D2→3H4 and 3P0→3F2 electron transition of Pr3+ ion, and it is the same as that for solid state reaction preparation. Comparing to the solid state reaction preparation, the intensities of the 3P0→3H4 transition were increased by about 6.5 times for sol-gel method. The enhancement in emission intensity is because the activators have more homogeneous contribution in host for the sol-gel method preparation. In addition, the color tone did not change very obviously, which located around the green light region for Pr3+ ion concentrations increasing. The color stability is better for sol-gel method than that for the solid state reaction preparation.
Cite this paper
Shih, H. , Tsai, M. , Teoh, L. and Chang, Y. (2019) Structure and Photoluminescence Properties of Pr3+ Ion-Doped BaY2ZnO5 Phosphor Prepared Using a Sol-Gel Method?. Journal of Modern Physics, 10, 91-101. doi: 10.4236/jmp.2019.102008.
[1]   Hsu, W.T., Wu, W.H. and Lu, C.H. (2003) Materials Science and Engineering: B, 104, 40-44.

[2]   Mauch, R.H. (1996) Applied Surface Science, 92, 589-597.

[3]   Yi, L., Hou, Y., Zhao, H., He, D., Xu, Z., Wang, Y. and Xu, X. (2000) Displays, 21, 147-149.

[4]   Zhao, X., Wang, X., Chen, B., Meng, Q., Di, W., Ren, G. and Yang, Y. (2007) Journal of Alloys and Compounds, 433, 352-355.

[5]   Wakefield, G., Keron, H.A., Dobson, P.J. and Hutchison, J.L. (1999) Journal of Colloid and Interface Science, 215, 179-182.

[6]   Jung, H.K., Park, D.S. and Park, Y.C. (1999) Materials Research Bulletin, 34, 43-51.

[7]   Pedrini, C., Bouttet, D., Dujardin, C., Moine, B., Dafinei, I., Lecoq, P., Koselja, M. and Blazek, K. (1994) Optical Materials, 3, 81-88.

[8]   Piper, W., DeLuca, J. and Ham, F. (1974) Journal of Luminescence, 8, 344-348.

[9]   Sommerdijk, J., Bril, A. and De Jager, A. (1974) Journal of Luminescence, 8, 341-343.

[10]   Kaduk, J.A., Wing, N.W., Greenwood, W., Dillingham, J. and Toby, B.H. (1999) Journal of Research of the National Institute of Standards and Technology, 104, 147-171.

[11]   Liang, C.H., Chang, Y.C. and Chang, Y.S. (2008) Applied Physics Letters, 93, Article ID: 211902.

[12]   Liang, C.H., Teoh, L.G., Liu, K.T. and Chang, Y.S. (2012) Journal of Alloys and Compounds, 517, 9-13.

[13]   Shih, H.R. and Chang, Y.S. (2017) Journal of Electronic Materials, 46, 6603-6608.

[14]   Shih, H.R., Tsai, Y.Y., Liu, K.T., Liao, Y.Z. and Chang, Y.S. (2013) Optical Materials, 35, 2654-2657.

[15]   Shih, H.R., Tsai, M.T., Chen, H.L., Xiang, Y.X. and Chang, Y.S. (2014) Materials Research Bulletin, 55, 33-37.

[16]   Williams, D.K., Bihari, B., Tissue, B.M. and McHale, J.M. (1998) The Journal of Physical Chemistry B, 102, 916-920.

[17]   Zhang, J., Zhang, Z., Tang, Z., Lin, Y. and Zheng, Z. (2002) Journal of Materials Processing Technology, 121, 265-268.

[18]   Li, Y., Duan, X., Liao, H. and Qian, Y. (1998) Chemistry of Materials, 10, 17-18.

[19]   Hirano, M. (2000) Journal of Materials Chemistry, 10, 469-472.

[20]   Hirano, M., Imai, M. and Inagaki, M. (2000) Journal of the American Ceramic Society, 83, 977-979.

[21]   Tas, A.C., Majewski, P.J. and Aldinger, F. (2002) Journal of Materials Research, 17, 1425-1433.

[22]   Nedelec, J.M., Mansuy, C. and Mahiou, R. (2003) Journal of Molecular Structure, 651-653, 165-170.

[23]   Li, J. and Kuwabara, M. (2003) Science and Technology of Advanced Materials, 4, 143-148.

[24]   Hashizume, K., Matsubayashi, M., Vachal, M. and Tani, T. (2002) Journal of Luminescence, 98, 49.

[25]   Liang, C.H., Qi, X.D. and Chang, Y.S. (2010) Journal of the Electrochemical Society, 157, 1169.

[26]   Hoefdraad, H.E. and Blasse, G. (1975) Physica Status Solidi (A), 29, K95-K97.

[27]   Donega, C.D.M., Meijerink, A. and Blasse, G. (1995) Journal of Physics and Chemistry of Solids, 56, 673-685.

[28]   Dorenbos, P. (2000) Journal of Luminescence, 91, 91.

[29]   Lin, Y.F., Chang, Y.H., Chang, Y.S., Tsai, B.S. and Li, Y.C. (2006) Journal of the Electrochemical Society, 153, G543.

[30]   Raju, G.S.R., Park, J.Y., Jung, H.C., Balarkrishnaiah, R., Moon, B.K. and Jeong, J.H. (2011) Current Applied Physics, 11, S292-S295.

[31]   Huang, S.C., Wu, J.K., Hsu, W.J., Chang, H.H., Hung, H.Y., Lin, C.L., Su, H.Y., Bagkar, N., Ke, W.C., Kuo, H.T. and Liu, R.S. (2009) International Journal of Applied Ceramic Technology, 6, 465.