JCC  Vol.7 No.2 , February 2019
An Efficient Identity-Based Homomorphic Broadcast Encryption
Author(s) Mei Cai
Broadcast encryption (BE) allows a sender to broadcast its message to a set of receivers in a single ciphertext. However, in broadcast encryption scheme, ciphertext length is always related to the size of the receiver set. Thus, how to improve the communication of broadcast encryption is a big issue. In this paper, we proposed an identity-based homomorphic broadcast encryption scheme which supports an external entity to directly calculate ciphertexts and get a new ciphertext which is the corresponding result of the operation on plaintexts without decrypting them. The correctness and security proofs of our scheme were formally proved. Finally, we implemented our scheme in a simulation environment and the experiment results showed that our scheme is efficient for practical applications.
Cite this paper
Cai, M. (2019) An Efficient Identity-Based Homomorphic Broadcast Encryption. Journal of Computer and Communications, 7, 23-30. doi: 10.4236/jcc.2019.72002.
[1]   Fiat, A. and Naor, M. (1993) Broadcast Encryption. Proceedings of the 13th Annual International Cryptology Conference, Santa Barbara, 22-26 August 1993, 48-491.

[2]   Delerablée, C., Paillier, P. and Pointcheval, D. (2007) Fully Collusion Secure Dynamic Broadcast Encryption with Constant-Size Ciphertexts or Decryption Keys. Proceedings of the First International Conference of Pairing-Based Cryptography, Tokyo, 2-4 July 2007, 39-59.

[3]   Jiang, L.M. and Guo, D.H. (2017) Dynamic Encrypted Data Sharing Scheme Based on Conditional Proxy Broadcast Re-Encryption for Cloud Storage. IEEE Access, 5, 13336-13345.

[4]   Xu, P., Jiao, T.F., Wu, Q.H., Wang, W. and Jin, H. (2016) Conditional Identity-Based Broadcast Proxy Re-Encryption and Its Application to Cloud Email. IEEE Transactions on Computers, 65, 66-79.

[5]   Baek, J., Safavi-Naini, R. and Susilo, W. (2005) Efficient Multi-Receiver Identity-Based Encryption and Its Application to Broadcast Encryption. Proceedings of the 8th International Workshop on Theory and Practice in Public Key Cryptography, Les Diablerets, 23-26 January 2005, 380-397.

[6]   Delerablée, C. (2007) Identity-Based Broadcast Encryption with Constant Size Ciphertexts and Private Keys. Proceedings of the 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, 2-6 December 2007, 200-215.

[7]   Gentry, C. and Waters, B. (2009) Adaptive Security in Broadcast Encryption Systems (with Short Ciphertexts). Proceedings of the 28th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cologne, 26-30 April 2009, 171-188.

[8]   He, K., Weng, J., Liu, J.-N., Liu, J.K., Liu, W. and Deng, R.H. (2016) Anonymous Identity-Based Broadcast Encryption with Chosen-Ciphertext Security. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, Xi’an, 30 May-3 June 2016, 247-255.

[9]   Boneh, D. and Franklin, M.K. (2001) Identity-Based Encryption from the Weil Pairing. Proceedings of the 21st Annual International Cryptology Conference, Santa Barbara, 19-23 August 2001, 213-229.

[10]   Caro, A.D. and Iovino, V. (2011) jPBC: Java Pairing Based Cryptography. Proceedings of the 16th IEEE Symposium on Computers and Communications, Kerkyra, 28 June-1 July 2011, 850-855.