AJPS  Vol.9 No.12 , November 2018
Growth Rates of Giant Miscanthus (Miscanthus × giganteus) and Giant Reed (Arundo donax) in a Low-Input System in Arkansas, USA
ABSTRACT
The US Department of Energy is currently building strategies for the expansion of clean and renewable energy sources, and tall, rapidly-growing grasses such as giant miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax) are two of the many of species that could fill this renewable energy niche. The objective was to compare stalk growth components of giant miscanthus and giant reed, in a low-input system (no irrigation and no fertilizer use) in Arkansas, USA. Due to the potential invasiveness of giant reed, our study was conducted on an upland site to minimize escape. Plant height and dry weight per stalk were measured every week for two consecutive growing seasons in 2012 and 2013. Leaf area index (LAI) was measured every two weeks from May to September in 2012. A significant species × day interaction occurred for plant height and dry weight per stalk, due to the relatively greater height and weight of giant reed compared to giant miscanthus after May. Stalk elongation rate was greater for giant reed than giant miscanthus (1.85 and 1.11 cm day-1, respectively). Leaf area index differed between species, giant reed (10.4 m2 m-2) > giant miscanthus (4.4 m2 m-2). We showed that giant reed produced taller, heavier stalks, and had a greater stalk elongation rate, compared to giant miscanthus. For sustainable bioenergy production from giant reed in Arkansas, further studies should be performed to determine ideal number of harvests per year and associated production cost.
Cite this paper
Acharya, M. , Burner, D. , Ashworth, A. , Fritschi, F. and Adams, T. (2018) Growth Rates of Giant Miscanthus (Miscanthus × giganteus) and Giant Reed (Arundo donax) in a Low-Input System in Arkansas, USA. American Journal of Plant Sciences, 9, 2371-2384. doi: 10.4236/ajps.2018.912172.
References
[1]   USDA Economic Research Services (USDA-ERS) (2012) Bioenergy Statistics. United States Department of Agriculture, Economic Research Service.
https://www.ers.usda.gov/data-products/us-bioenergy-statistics/

[2]   Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D. and Russell, G. (1981) Climate Impact of Increasing Atmospheric Carbon Dioxide. Science, 213, 957-966.
https://doi.org/10.1126/science.213.4511.957

[3]   Lewandowski, I., Kicherer, A. and Vonier, P. (1995) CO2-Balance for the Cultivation and Combustion of Miscanthus. Biomass and Bioenergy, 8, 81-90.
https://doi.org/10.1016/0961-9534(95)00008-U

[4]   Lewandowski, I. and Kicherer, A. (1997) Combustion Quality of Biomass: Practical Relevance and Experiments to Modify the Biomass Quality of Miscanthus x giganteus. European Journal of Agronomy, 6, 163-177.
https://doi.org/10.1016/S1161-0301(96)02044-8

[5]   Hill, J., Nelson, E., Tilman, D., Polasky, S. and Tiffany, D. (2006) Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels. Proceedings of the National Academy of Sciences, 103, 11206-11210.
https://doi.org/10.1073/pnas.0604600103

[6]   Heaton, E.A., Dohleman, F.G. and Long, S.P. (2008) Meeting US Biofuel Goals with Less Land: The Potential of Miscanthus. Global Change Biology, 14, 2000-2014.
https://doi.org/10.1111/j.1365-2486.2008.01662.x

[7]   Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’hare, M. and Kammen, D.M. (2006) Ethanol Can Contribute to Energy and Environmental Goals. Science, 311, 506-508.
https://doi.org/10.1126/science.1121416

[8]   Angelini, L.G., Ceccarini, L., Nassi o Di Nasso, N. and Bonari, E. (2009) Comparison of Arundo donax L. and Miscanthus x giganteus in a Long-Term Field Experiment in Central Italy: Analysis of Productive Characteristics and Energy Balance. Biomass and Bioenergy, 33, 635-643.
https://doi.org/10.1016/j.biombioe.2008.10.005

[9]   Anderson, E., Arundale, R., Maughan, M., Oladeinde, A., Wycislo, A. and Voigt, T. (2011) Growth and Agronomy of Miscanthus × giganteus for Biomass Production. Biofuels, 2, 167-183.
https://doi.org/10.4155/bfs.10.80

[10]   Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O. and Huisman, W. (2000) Miscanthus: European Experience with a Novel Energy Crop. Biomass and Bioenergy, 19, 209-227.
https://doi.org/10.1016/S0961-9534(00)00032-5

[11]   Beale, C.V. and Long, S.P. (1997) Seasonal Dynamics of Nutrient Accumulation and Partitioning in the Perennial C4-Grasses Miscanthus× giganteus and Spartina cynosuroides. Biomass and Bioenergy, 12, 419-428.
https://doi.org/10.1016/S0961-9534(97)00016-0

[12]   Christian, D.G., Riche, A.B. and Yates, N.E. (2008) Growth, Yield and Mineral Content of Miscanthus× giganteus Grown as a Biofuel for 14 Successive Harvests. Industrial Crops and Products, 28, 320-327.
https://doi.org/10.1016/j.indcrop.2008.02.009

[13]   Cosentino, S.L., Mantineo, M., Foti, S. and Spadaro, G. (2004) Cropping Systems and Soil Erosion in Mediterranean Environment. Proceedings of the Eighth European Society for Agronomy Congress, Copenhagen, Denmark, 11-15 July 2004, 971-993.

[14]   Kim, S., Da, K. and Mei, C. (2012) An Efficient System for High-Quality Large-Scale Micropropagation of Miscanthus × giganteus plants. In Vitro Cellular& Developmental Biology-Plant, 48, 613-619.

[15]   Carroll, A. and Somerville, C. (2009) Cellulosic Biofuels. Annual Review of Plant Biology, 60, 165-182.
https://doi.org/10.1146/annurev.arplant.043008.092125

[16]   Pilu, R., Bucci, A., Badone, F.C. and Landoni, M. (2012) Giant Reed (Arundo donax L.): A Weed Plant or a Promising Energy Crop? African Journal of Biotechnology, 11, 9163-9174.

[17]   Perdue, R.E. (1958) Arundo donax—Source of Musical Reeds and Industrial Cellulose. Economic Botany, 12, 368-404.
https://doi.org/10.1007/BF02860024

[18]   Guo, Z. and Miao, X. (2010) Growth Changes and Tissues Anatomical Characteristics of Giant Reed (Arundo donax L.) in Soil Contaminated with Arsenic, Cadmium and Lead. Journal of Central South University of Technology, 17, 770-777.
https://doi.org/10.1007/s11771-010-0555-8

[19]   Spencer, D.F., Tan, W. and Whitehand, L.C. (2010) Variation in Arundo donax Stem and Leaf Strength: Implications for Herbivory. Aquatic Botany, 93, 75-82.
https://doi.org/10.1016/j.aquabot.2010.03.005

[20]   Boland, J.M. (2008) The Roles of Floods and Bulldozers in the Break-Up and Dispersal of Arundo donax (Giant Reed). Madrono, 55, 216-222.
https://doi.org/10.3120/0024-9637-55.3.216

[21]   Frandsen, P.R. (1997) Team Arundo: Interagency Cooperation to Control Giant Cane (Arundo donax). In: Assessment and Management of Plant Invasions, Springer Series on Environmental Management, Springer, New York, 244-248.
https://doi.org/10.1007/978-1-4612-1926-2_18

[22]   Papazoglou, E.G., Karantounias, G.A., Vemmos, S.N. and Bouranis, D.L. (2005) Photosynthesis and Growth Responses of Giant Reed (Arundo donax L.) to the Heavy Metals Cd and Ni. Environment International, 31, 243-249.
https://doi.org/10.1016/j.envint.2004.09.022

[23]   Gitelson, A.A., Peng, Y. and Huemmrich, K.F. (2014) Relationship between Fraction of Radiation Absorbed by Photosynthesizing Maize and Soybean Canopies and NDVI from Remotely Sensed Data Taken at Close Range and from MODIS 250 m Resolution Data. Remote Sensing of Environment, 147, 108-120.
https://doi.org/10.1016/j.rse.2014.02.014

[24]   Monsi, M. (1953) Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion. The Journal of Japanese Botany, 14, 22-52.

[25]   Hipps, L.E., Asrar, G. and Kanemasu, E.T. (1983) Assessing the Interception of Photosynthetically Active Radiation in Winter Wheat. Agricultural Meteorology, 28, 253-259.
https://doi.org/10.1016/0002-1571(83)90030-4

[26]   Jones, C.A., Kiniry, J.R. and Dyke, P. (1986) CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, College Station.

[27]   Trápani, N., Hall, A.J., Sadras, V.O. and Vilella, F. (1992) Ontogenetic Changes in Radiation Use Efficiency of Sunflower (Helianthus annuus L.) Crops. Field Crops Research, 29, 301-316.
https://doi.org/10.1016/0378-4290(92)90032-5

[28]   Vargas, L.A., Andersen, M.N., Jensen, C.R. and Jørgensen, U. (2002) Estimation of Leaf Area Index, Light Interception and Biomass Accumulation of Miscanthus sinensis “Goliath” from Radiation Measurements. Biomass and Bioenergy, 22, 1-14.
https://doi.org/10.1016/S0961-9534(01)00058-7

[29]   Ghetti, P., Ricca, L. and Angelini, L. (1996) Thermal Analysis of Biomass and Corresponding Pyrolysis Products. Fuel, 75, 565-573.
https://doi.org/10.1016/0016-2361(95)00296-0

[30]   Jeon, Y.J., Xun, Z. and Rogers, P.L. (2010) Comparative Evaluations of Cellulosic Raw Materials for Second Generation Bioethanol Production. Letters in Applied Microbiology, 51, 518-524.
https://doi.org/10.1111/j.1472-765X.2010.02923.x

[31]   NassioDi Nasso, N., Roncucci, N., Triana, F., Tozzini, C. and Bonari, E. (2011) Productivity of Giant Reed (Arundo donax L.) and Miscanthus (Miscanthus x giganteus Greef et Deuter) as Energy Crops: Growth Analysis. Italian Journal of Agronomy, 6, 22.
https://doi.org/10.4081/ija.2011.e22

[32]   Natural Resources Conservation Services (NRCS) Soil Survey (2003) Leadvale Series.
https://soilseries.sc.egov.usda.gov/OSD_Docs/L/LEADVALE.html

[33]   National Oceanic and Atmospheric Administration (NOAA) (2013) Daily Weather Maps. U.S. Dep. Commer., Washington DC.

[34]   Burner, D.M., Tew, T.L., Harvey, J.J. and Belesky, D.P. (2009) Dry Matter Partitioning and Quality of Miscanthus, Panicum, and Saccharum Genotypes in Arkansas, USA. Biomass and Bioenergy, 33, 610-619.
https://doi.org/10.1016/j.biombioe.2008.10.002

[35]   Burner, D.M., Hale, A.L., Carver, P., Pote, D.H. and Fritschi, F.B. (2015) Biomass Yield Comparisons of Giant Miscanthus, Giant Reed, and Miscane Grown under Irrigated and Rainfed Conditions. Industrial Crops and Products, 76, 1025-1032.
https://doi.org/10.1016/j.indcrop.2015.07.071

[36]   Burner, D.M., Ashworth, A.J., Pote, D.H., Kiniry, J.R., Belesky, D.P., Houx III, J.H., Carver, P. and Fritschi, F.B. (2016) Dual-Use Bioenergy-Livestock Feed Potential of Giant Miscanthus, Giant Reed, and Miscane. Agricultural Sciences, 8, 97-112.
https://doi.org/10.4236/as.2017.81008

[37]   Purcell, L.C., Ball, R.A., Reaper, J.D. and Vories, E.D. (2002) Radiation Use Efficiency and Biomass Production in Soybean at Different Plant Population Densities. Crop Science, 42, 172-177.
https://doi.org/10.2135/cropsci2002.1720

[38]   Saitoh, T.M., Nagai, S., Noda, H.M., Muraoka, H. and Nasahara, K.N. (2012) Examination of the Extinction Coefficient in the Beer-Lambert Law for an Accurate Estimation of the Forest Canopy Leaf Area Index. Forest Science and Technology, 8, 67-76.
https://doi.org/10.1080/21580103.2012.673744

[39]   Loïc, S. (2011) Nitrogen Fluxes in a Perennial Energetic Crop, Miscanthus x giganteus: Experimental Study and Modelling Elements. Doctoral Dissertation, AgroParisTech, 252 p.

[40]   Davey, C.L., Jones, L.E., Squance, M., Purdy, S.J., Maddison, A.L., Cunniff, J., Donnison, I. and Clifton-Brown, J. (2017) Radiation Capture and Conversion Efficiencies of Miscanthus sacchariflorus, M. sinensis and Their Naturally Occurring Hybrid M. × giganteus. Gcb Bioenergy, 9, 385-399.
https://doi.org/10.1111/gcbb.12331

[41]   Clifton-Brown, J.C., Neilson, B., Lewandowski, I. and Jones, M. (2000) The Modelled Productivity of Miscanthus × giganteus (GREEF et DEU) in Ireland. Industrial Crops and Products, 12, 97-109.
https://doi.org/10.1016/S0926-6690(00)00042-X

[42]   Ceotto, E., Di Candilo, M.D., Castelli, F., Badeck, Rizza, F., Soave, C., Volta, A., Villani, G. and Marletto, M. (2013) Comparing Solar Radiation Interception and Use Efficiency for the Energy Crops Giant Reed (Arundo donax L.) and Sweet Sorghum (Sorghum bicolor L. Moench). Field Crops Research, 149, 159-166.
https://doi.org/10.1016/j.fcr.2013.05.002

[43]   Cosentino, S.L., Patanè, C., Sanzone, E., Testa, G. and Scordia, D. (2016) Leaf Gas Exchange, Water Status and Radiation Use Efficiency of Giant Reed (Arundo donax L.) in a Changing Soil Nitrogen Fertilization and Soil Water Availability in a Semi-Arid Mediterranean Area. European Journal of Agronomy, 72, 56-69.
https://doi.org/10.1016/j.eja.2015.09.011

[44]   SAS Institute Inc. (2009) SAS 9.2. SAS Institute Inc., Cary.

[45]   Saxton, A.M. (1998) A Macro for Converting Mean Separation Output to Letter Groupings in Proc Mixed, 1243-1246. Proceedings of 23rd SAS Users Group International, SAS Institute, Cary, 1-4.

[46]   Clifton-Brown, J.C., Lewandowski, I., Andersson, B., Basch, G., Christian, D.G., Kjeldsen, J.B., Jørgensen, U., Mortensen, J.V., Riche, A.B., Schwarz, K., Tayebi, K. and Teixeira, F. (2001) Performance of 15 Miscanthus Genotypes at Five Sites in Europe. Agronomy Journal, 93, 1013-1019.
https://doi.org/10.2134/agronj2001.9351013x

[47]   Spencer, D.F., Liow, P., Chan, W.K., Ksander, G.G. and Getsinger, K.D. (2006) Estimating Arundo donax Shoot Biomass. Aquatic Botany, 84, 272-276.
https://doi.org/10.1016/j.aquabot.2005.11.004

[48]   Himken, M., Lammel, J., Neukirchen, D., Czypionka-Krause, U. and Olfs, H. (1997) Cultivation of Miscanthus under West European Conditions: Seasonal Changes in Dry Matter Production, Nutrient Uptake and Remobilization. Plant and Soil, 189, 117-126.
https://doi.org/10.1023/A:1004244614537

[49]   Clifton-Brown, J.C., Breuer, J. and Jones, M.B. (2007) Carbon Mitigation by the Energy Crop, Miscanthus. Global Change Biology, 13, 2296-2307.
https://doi.org/10.1111/j.1365-2486.2007.01438.x

[50]   Ercoli, L., Mariotti, M., Masoni, A. and Bonari, E. (1999) Effect of Irrigation and Nitrogen Fertilization on Biomass Yield and Efficiency of Energy Use in Crop Production of Miscanthus. Field Crops Research, 63, 3-11.
https://doi.org/10.1016/S0378-4290(99)00022-2

[51]   Cosentino, S.L., Patane, C., Sanzone, E., Copani, V. and Foti, S. (2007) Effects of Soil Water Content and Nitrogen Supply on the Productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean Environment. Industrial Crops and Products, 25, 75-88.
https://doi.org/10.1016/j.indcrop.2006.07.006

[52]   Angelini, L.G., Ceccarini, L. and Bonari, E. (2005) Biomass Yield and Energy Balance of Giant Reed (Arundo donax L.) Cropped in Central Italy as Related to Different Management Practices. European Journal of Agronomy, 22, 375-389.
https://doi.org/10.1016/j.eja.2004.05.004

[53]   Cosentino, S.L., Scordia, D., Sanzone, E., Testa, G. and Copani, V. (2014) Response of Giant Reed (Arundo donax L.) to Nitrogen Fertilization and Soil Water Availability in Semi-Arid Mediterranean Environment. European Journal of Agronomy, 60, 22-32.
https://doi.org/10.1016/j.eja.2014.07.003

[54]   Mann, J.J., Barney, J.N., Kyser, G.B. and Di Tomaso, J.M. (2013) Miscanthus × giganteus and Arundo donax Shoot and Rhizome Tolerance of Extreme Moisture Stress. Gcb Bioenergy, 5, 693-700.
https://doi.org/10.1111/gcbb.12039

[55]   Mann, J.J., Barney, J.N., Kyser, G.B. and DiTomaso, J.M. (2013) Root System Dynamics of Miscanthus × giganteus and Panicum virgatum in Response to Rainfed and Irrigated Conditions in California. Bioenergy Research, 6, 678-687.
https://doi.org/10.1007/s12155-012-9287-y

[56]   Rieger, J.P. and Kreager, D.A. (1989) Giant Reed (Arundo donax): A Climax Community of the Riparian Zone. Proceedings of the California Riparian Systems Conference, September 1988, 22-24.

[57]   Kryzeviciene, A., Kadziuliene, Z., Sarūnaite, L., Dabkevicius, Z., Tilvikiene, V. and Slepetys, J. (2011) Cultivation of Miscanthus × giganteus for Biofuel and Its Tolerance of Lithuania’s Climate. Zemdirbyste-Agriculture, 98, 267-274.

[58]   Bacher, W., Mix-Wagner, G., Sauerbeck, G. and El-Bassam, N. (2001) Giant Reed (Arundo donax L.) Network. Improvement, Productivity and Biomass Quality.
https://literatur.thuenen.de/digbib_extern/zi025259.pdf

[59]   Wilhelm, W.W., Ruwe, K. and Schlemmer, M.R. (2000) Comparison of Three Leaf Area Index Meters in a Corn Canopy. Crop Science, 40, 1179-1183.
https://doi.org/10.2135/cropsci2000.4041179x

[60]   Danalatos, N.G., Archontoulis, S.V. and Mitsios, I. (2007) Potential Growth and Biomass Productivity of Miscanthus × giganteus as Affected by Plant Density and N-Fertilization in Central Greece. Biomass and Bioenergy, 31, 145-152.
https://doi.org/10.1016/j.biombioe.2006.07.004

 
 
Top