NJGC  Vol.8 No.4 , October 2018
Effect of Zn Substitution on the Magnetic and Magnetocapacitance Properties of Nanosized Multiferroic GaFeO3 Ceramics
ABSTRACT
This article aims to investigate the possibility to turn the multiferroic orders and magnetocapacitance effect close to/above room temperature in nanosized GaFeO3 ceramics by a sol-gel preparation method and substitution with non-magnetic Zn atoms. Therefore, in this work, we have synthesized a series of nanocrystalline Ga1-xZnxFeO3(GZFO, x = 0, 0.01, 0.05 and 0.1) ceramic samples and study the effect of Zn substitution on their structural, magnetic, and electric properties. All the GZFO samples have an orthorhombic structure with Pc21n space group and the value of lattice parameters increase systematically with increasing Zn concentration. Interestingly, it shows that magnetic and electric properties are strongly dependent on the Zn substitution concentration. Based on the results of temperature-dependent magnetizations, M(T), it is observed that with increasing Zn-content up to 0.10, the ferrimagnetic transition temperature (TC) increases from 306 to 320 K. It is also found that the nanocrystalline Zn-doped GaFeO3 (GFO) samples exhibit the characteristics of ferroelectricity at room temperature. Furthermore, the magnetization, ferroelectric polarization and magnetocapacitance of Zn-doped GFO nanosized ceramics are enhanced compared to those of the pristine sample of GFO ferrite. These results open wide perspectives for the applications of room temperature multiferroic devices.
Cite this paper
Han, T. , Yen, C. , Chung, Y. and Wu, M. (2018) Effect of Zn Substitution on the Magnetic and Magnetocapacitance Properties of Nanosized Multiferroic GaFeO3 Ceramics. New Journal of Glass and Ceramics, 8, 55-63. doi: 10.4236/njgc.2018.84005.
References
[1]   Khomskii, D. (2009) Trend: Classifying Multiferroics: Mechanisms and Effects. Physics, 2, 20.
https://doi.org/10.1103/Physics.2.20

[2]   Wang, K.F., Liu, J.M. and Ren, Z.F. (2009) Multiferroicity: The Coupling between Magnetic and Polarization Orders. Advances in Physics, 58, 321-448.
https://doi.org/10.1080/00018730902920554

[3]   Rado, G.T. (1964) Observation and Possible Mechanisms of Magnetoelectric Effects in a Ferromagnet. Physical Review Letters, 13, 335.
https://doi.org/10.1103/PhysRevLett.13.335

[4]   Arima, T., Higashiyama, D., Kaneko, Y., He, J.P., Goto, T., Miyasaka, S., Kimura, T., Oikawa, K., Kamiyama, T., Kumai, R. and Tokura, Y. (2004) Structural and Magnetoelectric Properties of Ga2-xFexO3 Single Crystals Grown by a Floating-Zone Method. Physical Review B, 70, 064426.
https://doi.org/10.1103/PhysRevB.70.064426

[5]   Han, M.J., Ozaki, T. and Yu, J. (2007) Magnetic Ordering and Exchange Interactions in Multiferroic GaFeO3. Physical Review B, 75, 060404(R).
https://doi.org/10.1103/PhysRevB.75.060404

[6]   Naik, V.B. and Mahendiran, R. (2009) Electrical, Magnetic, Magnetodielectric, and Magnetoabsorption Studies in Multiferroic GaFeO3. Journal of Applied Physics, 106, 123910.
https://doi.org/10.1063/1.3271391

[7]   Mohamed, M.B., Senyshyn, A., Ehrenberg, H. and Fuess, H. (2010) Structural, Magnetic, Dielectric Propertiesof Multiferroic GaFeO3 Prepared by Solid State Reaction and Sol-Gel Methods. Journal of Alloys and Compounds, 492, L20-L27.
https://doi.org/10.1016/j.jallcom.2009.11.099

[8]   Mukherjee, S., Ranjan, V., Gupta, R. and Garg, A. (2012) Compositional Dependence of Structural Parameters, Polyhedral Distortion and Magnetic Properties of Gallium Ferrite. Solid State Communications, 152, 1181-1185.
https://doi.org/10.1016/j.ssc.2012.03.010

[9]   Mohamed, M.B. and Fuess, H. (2011) Effect of Mn Doping on Structural and Magnetic Properties of GaFeO3. Journal of Magnetism and Magnetic Materials, 323, 2090-2094.
https://doi.org/10.1016/j.jmmm.2011.03.019

[10]   Han, T.C., Lee, Y.C. and Chu, YT. (2014) Effect of Cobalt Doping on Site-Disorder and Magnetic Behavior of Magnetoelectric GaFeO3 Nanoparticles. Applied Physics Letters, 105, 212407.
https://doi.org/10.1063/1.4902874

[11]   Thomasson, A., Cherifi, S., Lefevre, C., Roulland, F., Gautier, B., Albertini, D., Meny, C. and Viart, N. (2013) Room Temperature Multiferroicity in Ga0.6Fe1.4O3: MgThin Films. Journal of Applied Physics, 113, 214101.
https://doi.org/10.1063/1.4808349

[12]   Akther Hossain, A.K.M., Mahmud, S.T., Seki, M., Kawai, T. and Tabata, H. (2007) Structural, Electrical Transport, and Magnetic Properties of Ni1-xZnxFe2O4. Journal of Magnetism and Magnetic Materials, 312, 210-219.
https://doi.org/10.1016/j.jmmm.2006.09.030

[13]   Patterson, A.L. (1939) The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56, 978.
https://doi.org/10.1103/PhysRev.56.978

[14]   Paszkowicz, W., Pietosa, J., Woodley, S.M., Dluzewski, P.A., Kozlowski, M. and Martin, C. (2010) Lattice Parameters and Orthorhombic Distortion of CaMnO3. Powder Diffraction, 25, 46-59.
https://doi.org/10.1154/1.3314256

[15]   Kim, W., We, J.H., Kim, S.J. and Kim, C.S. (2007) Effects of Cation Distribution for AFeO3 (A = Ga, Al). Journal of Applied Physics, 101, 09M515.

[16]   Sun, Z.H., Cheng, B.L., Dai, S., Cao, L.Z., Zhou, Y.L., Jin, K.J., Chen, Z.H. and Yang, G.Z. (2006) Dielectric Properties Studies of Multiferroic GaFeO3. Journal of Physics D: Applied Physics, 39, 2481-2484.
https://doi.org/10.1088/0022-3727/39/12/001

[17]   Li, M., Ning, M., Ma, Y., Wu, Q. and Ong, C.K. (2007) Room Temperature Ferroelectric, Ferromagnetic and Magnetoelectric Properties of Ba-Doped BiFeO3 Thin Films. Journal of Physics D: Applied Physics, 40, 1603-1607.
https://doi.org/10.1088/0022-3727/40/6/002

[18]   Lefevre, C., Shin, R.H., Lee, J.H., Oh, S.H., Roulland, F., Thomasson, A., Autissier, E., Meny, C. Jo, W. and Viart, N. (2012) Reduced Leakage Currents and Possible Change Carriers Tuning in Mg-Doped Ga0.6Fe1.4O3 Thin Films. Applied Physics Letters, 100, 262904.
https://doi.org/10.1063/1.4729872

 
 
Top