OJPP  Vol.8 No.4 , August 2018
Algebraic Structures of Mathematical Foundations
ABSTRACT
In this paper we undertake to examine how algebra, its tools and its methods, can be used to formulate the mathematics used in applications. We give particular attention to the mathematics used in application to physics. We suggest that methods first proposed by Henry Siggins Leonard are well suited to such an examination.
Cite this paper
Jones, R. M. (2018) Algebraic Structures of Mathematical Foundations. Open Journal of Philosophy, 8, 401-407. doi: 10.4236/ojpp.2018.84027.
References
[1]   Allan, G. R. (2011). Introduction to Banach Spaces and Algebras. Oxford, UK: Oxford University Press.

[2]   Bub, J. (1997). Interpreting the Quantum World. Cambridge, UK: Cambridge University Press.

[3]   Jacobson, N. (1951). Lectures in Abstract Algebra, 1. Basic Concepts, 2. Linear Algebra, 3. Theory of Fields and Galois Theory. New York: D. Van Nostrand Company.

[4]   Jech, T. (2006). Set Theory: The Third Millenium Edition, Revised and Expanded (3rd ed.). Berlin: Springer-Verlag. (Corrected 4th Printing 2006).

[5]   Jones, R. M. (1962). A Note on Obversion. Mind, LXXI, 541-542.
https://doi.org/10.1093/mind/LXXI.284.541

[6]   Jones, R. M. (1964). Formal Results in the Logic of Existence. Philosophical Studies, 15, 7-10.
https://doi.org/10.1007/BF00428091

[7]   Jones, R. M. (2014). Model Theories of Set Theories and Type Theory. Open Journal of Philosophy, 4, 54-58.

[8]   Kreisel, G. (1967) Informal Rigour and Completeness Proofs. Problems in the Philosophy of Mathematics, 47, 138-186.
https://doi.org/10.1016/S0049-237X(08)71525-8

[9]   Leonard, H. S. (1969) The Logic of Existence. Philosophical Studies, 7, 49-64.
https://doi.org/10.1007/BF02221764

[10]   Murphy, G. (1990). C*-Algebras and Operator Theory. San Diego, CA: Academic Press.

[11]   Neuenschwander, D. (2011). Emmy Noether’s Wonderful Theorem. Baltimore, MD: The John Hopkins University Press.

[12]   Pietsch, A. (2007). History of Banach Spaces and Linear Operators. Berlin: Birkhäuser.

[13]   Reid, C. (1996). Hilbert. New York, NY: Springer-Verlag.
https://doi.org/10.1007/978-1-4612-0739-9

[14]   Saxe, K. (2002). Beginning Functional Analysis. New York, NY: Springer-Verlag.
https://doi.org/10.1007/978-1-4757-3687-8

[15]   Schauder, J. (1930). über die Umkehrung linearer, stetiger Funktionaloperationen. Studia Mathematica, 2, 1-6.

[16]   Solomon, R. (2018). The Classification of Finite Simple Groups: A Progress Report. Notices of the American Mathematical Society, 65, 646-651.

 
 
Top