JMP  Vol.9 No.8 , July 2018
How the CMB Anisotropy Pattern Could Be a Map of Gravitational Entropy
ABSTRACT
The rationale for Flat Space Cosmology (FSC) calculations of gravitational entropy in the form ofis presented. These calculations indicate a tight correlation with the COBE DMR measurement showing CMB RMS temperature variations of 18 micro Kelvins. The COBE dT/T anisotropy ratio of 0.66 × 10−5 falls within the FSC gravitational entropy range calculated for the beginning and ending conditions of the recombination/decoupling epoch. Thus, the FSC model incorporating gravity as an emergent property of entropy suggests that the CMB temperature anisotropy pattern could simply be a map of gravitational entropy, as opposed to a magnified “quantum fluctuation” event at a finite beginning of time.
Cite this paper
Tatum, E. (2018) How the CMB Anisotropy Pattern Could Be a Map of Gravitational Entropy. Journal of Modern Physics, 9, 1484-1490. doi: 10.4236/jmp.2018.98092.
References
[1]   Tatum, E.T. and Seshavatharam, U.V.S. (2018) Journal of Modern Physics, 9, 1469-1483.
https://doi.org/10.4236/jmp.2018.98091

[2]   Verlinde, E. (2010) On the Origin of Gravity and the Laws of Newton. arXiv:1001.0785v1 [hep-th].

[3]   Penrose, R. (2016) Fashion Faith and Fantasy in the New Physics of the Universe. Princeton University Press, Princeton, US.
https://doi.org/10.1515/9781400880287

[4]   Bekenstein, J.D. (1974) Physical Review D, 9, 3292-3300.
https://doi.org/10.1103/PhysRevD.9.3292

[5]   Hawking, S. (1976) Physical Review D, 13, 191-197.
https://doi.org/10.1103/PhysRevD.13.191

[6]   Spergel, D.N., et al. (2003) Astrophysical Journal Supplement, 148, 175-194. arXiv:astro-ph/0302209.
https://doi.org/10.1086/377226

[7]   Tatum, E.T. and Seshavatharam, U.V.S. (2018) Journal of Modern Physics, 9, 1404-1414.
https://doi.org/10.4236/jmp.2018.97085

[8]   Tatum, E.T., Seshavatharam, U.V.S. and Lakshminarayana, S. (2015) International Journal of Astronomy and Astrophysics, 5, 116-124.
https://doi.org/10.4236/ijaa.2015.52015

[9]   Tatum, E.T., Seshavatharam, U.V.S. and Lakshminarayana, S. (2015) Journal of Applied Physical Science International, 4, 18-26.

[10]   Tatum, E.T., Seshavatharam, U.V.S. and Lakshminarayana, S. (2015) Frontiers of Astronomy, Astrophysics and Cosmology, 1, 98-104.
http://pubs.sciepub.com/faac/1/2/3

[11]   Sachs, R.K. and Wolfe, A.M. (1967) Astrophysical Journal, 147, 73-90.
https://doi.org/10.1086/148982

[12]   Wright, E.L. (2003) Theoretical Overview of Cosmic Microwave Background Anisotropy. In: Freedman, W.L., Ed., Measuring and Modeling the Universe, Cambridge University Press, Cambridge, 291.

[13]   Bucher, M. (2015) Physics of the Cosmic Microwave Background Anisotropy. arXiv:1501.04288v1 [astro-ph.CO].
https://doi.org/10.1142/S0218271815300049

[14]   De Bernardis, P., et al. (2000) A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation. arXiv:astro-ph/0004404v1.
https://doi.org/10.1038/35010035

[15]   Bennett, C.L. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. arXiv:1212.5225v3 [astro-ph.CO].
https://doi.org/10.1088/0067-0049/208/2/20

[16]   Planck Collaboration (2014) Astronomy & Astrophysics, 23, 1-48.

[17]   Keating, B. (2018) Losing the Nobel Prize. W. W. Norton & Company, New York.

[18]   Gibbs, P.E. (2014) Prespacetime Journal, 5, 230-233.
https://prespacetime.com/index.php/pst/article/download/614/612

[19]   Wright, E.L., et al. (1996) Astrophysical Journal, 464, L21-L24.
https://doi.org/10.1086/310073

 
 
Top